Skip to content

uw-biomedical-ml/RETFound_MAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RETFound_MAE (Official Keras Implementation)

Release notes

Keras implementation of RETFound_MAE by Yukun Zhou.

Please contact [email protected] if you have questions.

Installation

Create enviroment with conda:

conda create -n retfound_mae python=3.9 -y
conda activate retfound_mae

Install Tensorflow 2.8.3 (cuda 11.1)

conda install -c conda-forge cudatoolkit=11.2.2 cudnn=8.1.0
python -m pip install tensorflow==2.8.3
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CONDA_PREFIX/lib/
# To list the number of visible GPUs on the host.
python -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

Install others

git clone https://github.com/uw-biomedical-ml/RETFound_MAE
cd RETFound_MAE
pip install -r requirements.txt

Fine-tuning with RETFound weights

  • RETFound pre-trained weights
Download
Colour fundus image OCT
  • Start fine-tuning (use IDRiD as example). A fine-tuned checkpoint for best model on validation loss will be saved during training.
python main_finetune.py
    --data_path ./IDRiD_data/ \
    --nb_classes 5 \ 
    --finetune ./RETFound_cfp_weights.h5 \ 
    --task ./finetune_IDRiD/ \
  • For evaluation
python main_finetune.py
    --data_path ./IDRiD_data/ \
    --nb_classes 5 \ 
    --task ./internal_IDRiD/ \    
    --eval \
    --resume ./finetune_IDRiD/

Load the model

import tfimm
from models_vit import *
# call the model
keras_model = tfimm.create_model( # apply global pooling without class token
    "vit_large_patch16_224_mae",
    nb_classes = opt.nb_classes
    )

If you want to train the classifier with a class token (default is using global average pooling without this class token),

import tfimm
from models_vit import *
# call the model
keras_model = tfimm.create_model(
    "vit_large_patch16_224",
    nb_classes = opt.nb_classes
    )

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages