Skip to content

Commit

Permalink
Increase sample size of empirical variograms in advanced examples for…
Browse files Browse the repository at this point in the history
… clearer plots (GlacioHack#492)
  • Loading branch information
rhugonnet authored Mar 18, 2024
1 parent 981d7db commit 1ad4ad1
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 4 deletions.
2 changes: 1 addition & 1 deletion examples/advanced/plot_standardization.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@
df_vgm = xdem.spatialstats.sample_empirical_variogram(
values=z_dh.data.squeeze(),
gsd=dh.res[0],
subsample=300,
subsample=1000,
n_variograms=10,
estimator="dowd",
random_state=42,
Expand Down
4 changes: 1 addition & 3 deletions examples/advanced/plot_variogram_estimation_modelling.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,9 +78,7 @@
# conveniently by :func:`xdem.spatialstats.sample_empirical_variogram`:
# Dowd's variogram is used for robustness in conjunction with the NMAD (see :ref:`robuststats-corr`).

df = xdem.spatialstats.sample_empirical_variogram(
values=dh.data, gsd=dh.res[0], subsample=100, n_variograms=10, estimator="dowd", random_state=42
)
df = xdem.spatialstats.sample_empirical_variogram(values=dh, subsample=1000, n_variograms=10, estimator="dowd", random_state=42)

# %%
# *Note: in this example, we add a* ``random_state`` *argument to yield a reproducible random sampling of pixels within
Expand Down

0 comments on commit 1ad4ad1

Please sign in to comment.