CS698U (Visual Recognition)
-
PyTorch implementation of paper- Bousmalis, Konstantinos, et al. "Unsupervised Pixel-level Domain Adaptation with GANs." (2017)
-
All classifiers except
mnist_classifer.py
are taken from https://github.com/kuangliu/pytorch-cifar
Basic folder structure
├── pixelda_gan_classifier.py # PIXELDA GAN (as per the paper)
├── pixelda_lsgan_classifier.py # Same architecture as of PIXELDA GAN with modified loss function similar to LS-GAN
├── dcgan_classifier.py # DCGAN architecture
├── run_classifier.py # Resume training or test a classifer
├── params.py # Model parameters
├── dataset.py # create dataloaders
├── plotter.py # generate plots parallelly
├── utils.py # utils
├── dataloader # custom dataloaders
│ ├── mnistm_loader.py
| └── usps_loader.py
├── classifiers # Classifiers' architecture
│ ├── mnist_classifier.py # Shared layered classifier (as per the paper)
| └── *.py # Other classifiers
├── GANs # GAN architecture
│ ├── dcgan.py # DC-GAN architecture
| └── pixelda_gan.py # PIXELDA-GAN architecture
├── data (not included in the repo)
│ ├── mnist # mnist data (not included in the repo); subdirectories will be created by pytorch (using torchvision.datasets)
│ | ├── processed
│ ├── test.pt
│ └── training.pt
│ | └── raw
│ ├── t10k-images-idx3-ubyte
│ ├── t10k-labels-idx1-ubyte
│ ├── train-images-idx3-ubyte
│ └── train-labels-idx1-ubyte
│ ├── mnist_m # MNIST-M dataset (not included in the repo)
(Download: https://drive.google.com/drive/folders/0B_tExHiYS-0vR2dNZEU4NGlSSW8)
│ | ├── mnist_m_test
│ └── *.png
│ | ├── mnist_m_train
│ └── *.png
│ ├── mnist_m_test_labels.txt
│ ├── mnist_m_train_labels.txt
│ └── usps # USPS dataset (not included in the repo)
(Download: https://github.com/marionmari/Graph_stuff/tree/master/usps_digit_data)
│ ├── usps_resampled.mat
│ └── usps_split.pkl # created by code
├── checkpoint # model files to be saved here (not included in the repo)
├── images # generated images to be saved here (not included in the repo)
└── plots # generated plots to be saved here (not included in the repo)
- PyTorch (from source)
- cuda 8.0
- NVIDIA GTX
- Python 3.6.2
- matplotlib
- numpy
- multiprocessing