-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
286 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,286 @@ | ||
import torch.nn as nn | ||
import math | ||
import torch.utils.model_zoo as model_zoo | ||
import torch | ||
|
||
__all__ = ['Res_Deeplab_forward','Res_Deeplab','ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | ||
'resnet152'] | ||
|
||
affine_par = True | ||
model_urls = { | ||
'resnet18': 'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth', | ||
'resnet34': 'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth', | ||
'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth', | ||
'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth', | ||
'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth', | ||
} | ||
|
||
|
||
def conv3x3(in_planes, out_planes, stride=1): | ||
"3x3 convolution with padding" | ||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | ||
padding=1, bias=False) | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = conv3x3(inplanes, planes, stride) | ||
self.bn1 = nn.BatchNorm2d(planes, affine = affine_par) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.conv2 = conv3x3(planes, planes) | ||
self.bn2 = nn.BatchNorm2d(planes, affine = affine_par) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, dilation_ = 1, downsample=None): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change | ||
self.bn1 = nn.BatchNorm2d(planes,affine = affine_par) | ||
for i in self.bn1.parameters(): | ||
i.requires_grad = False | ||
padding = 1 | ||
if dilation_ == 2: | ||
padding = 2 | ||
elif dilation_ == 4: | ||
padding = 4 | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change | ||
padding=padding, bias=False, dilation = dilation_) | ||
self.bn2 = nn.BatchNorm2d(planes,affine = affine_par) | ||
for i in self.bn2.parameters(): | ||
i.requires_grad = False | ||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(planes * 4, affine = affine_par) | ||
for i in self.bn3.parameters(): | ||
i.requires_grad = False | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
|
||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
class Classifier_Module(nn.Module): | ||
|
||
def __init__(self,no_outs,dilation_series,padding_series): | ||
super(Classifier_Module, self).__init__() | ||
self.conv2d_list = nn.ModuleList() | ||
for dilation,padding in zip(dilation_series,padding_series): | ||
self.conv2d_list.append(nn.Conv2d(2048,no_outs,kernel_size=3,stride=1, padding =padding, dilation = dilation,bias = True)) | ||
|
||
for m in self.conv2d_list: | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
#m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
m.weight.data.normal_(0,0.01) | ||
|
||
|
||
def forward(self, x): | ||
out = self.conv2d_list[0](x) | ||
for i in range(len(self.conv2d_list)-1): | ||
out += self.conv2d_list[i+1](x) | ||
return out | ||
|
||
|
||
|
||
class ResNet(nn.Module): | ||
def __init__(self, block, layers): | ||
self.inplanes = 64 | ||
super(ResNet, self).__init__() | ||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | ||
bias=False) | ||
self.bn1 = nn.BatchNorm2d(64,affine = affine_par) | ||
for i in self.bn1.parameters(): | ||
i.requires_grad = False | ||
self.relu = nn.ReLU(inplace=True) | ||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change | ||
self.layer1 = self._make_layer(block, 64, layers[0]) | ||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | ||
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation__ = 2) | ||
self.layer4 = self._make_layer(block, 512, layers[3]-1, stride=1, dilation__ = 4,change=False) | ||
|
||
self.layer4_5_r0 = self._make_layer(block, 512, 1, stride=1, dilation__ = 4,change=False,downsample_needed = False) | ||
self.layer5_r0 = self._make_pred_layer(Classifier_Module,5, [6,12,18,24],[6,12,18,24]) | ||
|
||
self.layer4_5_r1 = self._make_layer(block, 512, 1, stride=1, dilation__ = 4,change=False,downsample_needed = False) | ||
self.layer5_r1 = self._make_pred_layer(Classifier_Module,5, [6,12,18,24],[6,12,18,24]) | ||
|
||
self.layer4_5_r2 = self._make_layer(block, 512, 1, stride=1, dilation__ = 4,change=False,downsample_needed = False) | ||
self.layer5_r2 = self._make_pred_layer(Classifier_Module,7, [6,12,18,24],[6,12,18,24]) | ||
|
||
self.layer4_5_r3 = self._make_layer(block, 512, 1, stride=1, dilation__ = 4,change=False,downsample_needed = False) | ||
self.layer5_r3 = self._make_pred_layer(Classifier_Module,5, [6,12,18,24],[6,12,18,24]) | ||
|
||
self.layer4_5_r4 = self._make_layer(block, 512, 1, stride=1, dilation__ = 4,change=False,downsample_needed = False) | ||
self.layer5_r4 = self._make_pred_layer(Classifier_Module,9, [6,12,18,24],[6,12,18,24]) | ||
|
||
|
||
|
||
|
||
#self.avgpool = nn.AvgPool2d(7) | ||
#self.fc = nn.Linear(512 * 59*59, num_classes) | ||
#self.layer5 = self._make_pred_layer() | ||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
#m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
m.weight.data.normal_(0,0.01 ) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
# for i in m.parameters(): | ||
# i.requires_grad = False | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1,dilation__ = 1,change=True,downsample_needed = True): | ||
downsample = None | ||
if (stride != 1 or self.inplanes != planes * block.expansion or dilation__ == 2 or dilation__ == 4) and downsample_needed: | ||
downsample = nn.Sequential( | ||
nn.Conv2d(self.inplanes, planes * block.expansion, | ||
kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(planes * block.expansion,affine = affine_par), | ||
) | ||
for i in downsample._modules['1'].parameters(): | ||
i.requires_grad = False | ||
layers = [] | ||
if downsample_needed: | ||
layers.append(block(self.inplanes, planes, stride,dilation_=dilation__, downsample = downsample )) | ||
else: | ||
#print 'downsampled', planes | ||
layers.append(block(planes*block.expansion,planes,dilation_=dilation__)) | ||
# layers.append(block(512,planes,dilation_=dilation__)) | ||
|
||
#if not dilation__ == 4: | ||
self.inplanes_old = self.inplanes | ||
self.inplanes = planes * block.expansion | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes,dilation_=dilation__)) | ||
if not change: | ||
self.inplanes = self.inplanes_old | ||
|
||
return nn.Sequential(*layers) | ||
|
||
|
||
|
||
def _make_pred_layer(self,block,no_outs, dilation_series, padding_series): | ||
return block(no_outs,dilation_series,padding_series) | ||
|
||
def forward(self, x): | ||
x[0] = self.conv1(x[0]) | ||
x[0] = self.bn1(x[0]) | ||
x[0] = self.relu(x[0]) | ||
x[0] = self.maxpool(x[0]) | ||
|
||
x[0] = self.layer1(x[0]) | ||
x[0] = self.layer2(x[0]) | ||
x[0] = self.layer3(x[0]) | ||
x[0] = self.layer4(x[0]) | ||
|
||
if x[1] == 0: | ||
#print 'route 0' | ||
x[0] = self.layer4_5_r0(x[0]) | ||
x[0] = self.layer5_r0(x[0]) | ||
|
||
elif x[1] == 1: | ||
#print 'route 1' | ||
x[0] = self.layer4_5_r1(x[0]) | ||
x[0] = self.layer5_r1(x[0]) | ||
|
||
elif x[1] == 2: | ||
x[0] = self.layer4_5_r2(x[0]) | ||
x[0] = self.layer5_r2(x[0]) | ||
|
||
elif x[1] == 3: | ||
x[0] = self.layer4_5_r3(x[0]) | ||
x[0] = self.layer5_r3(x[0]) | ||
|
||
elif x[1] == 4: | ||
x[0] = self.layer4_5_r4(x[0]) | ||
x[0] = self.layer5_r4(x[0]) | ||
|
||
return x[0] | ||
|
||
class MS_Deeplab(nn.Module): | ||
def __init__(self,block): | ||
super(MS_Deeplab,self).__init__() | ||
self.Scale1 = ResNet(block,[3, 4, 23, 3]) # for original scale | ||
self.Scale2 = ResNet(block,[3, 4, 23, 3]) # for 0.75x scale | ||
self.Scale3 = ResNet(block,[3, 4, 23, 3]) # for 0.5x scale | ||
self.interp1 = nn.UpsamplingBilinear2d(size = (241,241)) | ||
self.interp2 = nn.UpsamplingBilinear2d(size = (161,161)) | ||
self.interp3 = nn.UpsamplingBilinear2d(size = (41,41)) | ||
self.interp4 = nn.UpsamplingBilinear2d(size = (41,41)) | ||
|
||
def forward(self,x): | ||
out = [] | ||
|
||
x2 = [] | ||
x2.append(self.interp1(x[0])) | ||
x2.append(x[1]) | ||
|
||
x3 = [] | ||
x3.append(self.interp2(x[0])) | ||
x3.append(x[1]) | ||
|
||
out.append(self.Scale1(x)) # for original scale | ||
out.append(self.interp3(self.Scale2(x2))) # for 0.75x scale but interped to original scale | ||
out.append(self.Scale3(x3)) # for 0.5x scale | ||
|
||
|
||
x2Out_interp = out[1] | ||
x3Out_interp = self.interp4(out[2]) | ||
#cat = torch.cat((out[0],x2Out_interp,x3Out_interp),dimension = 4) | ||
#out.append(torch.max(cat,dim = 4)) | ||
temp1 = torch.max(out[0],x2Out_interp) | ||
out.append(torch.max(temp1,x3Out_interp)) | ||
return out | ||
|
||
|
||
|
||
def Res_Deeplab(): | ||
model = MS_Deeplab(Bottleneck) | ||
return model | ||
|