Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
BlueBlaze6335 authored Oct 1, 2021
1 parent 710a173 commit 68c6b42
Showing 1 changed file with 76 additions and 0 deletions.
76 changes: 76 additions & 0 deletions Convolutional Neural Network/README.md
Original file line number Diff line number Diff line change
@@ -1 +1,77 @@
# Artificial Neural Netwrok Vs. Convolutional Nural Network !! [Image Classification]

## Notebook :

[Notebook](https://colab.research.google.com/drive/1cIIXFeROtJf7MovU7j6ipBDvur-X1o9M?usp=sharing)

## Dataset :

[**CIFAR-10**](https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz). (In this project the dataset has been directly loaded from the Tensorflow datasets :
```
tensorflow.keras.datasets.cifar10.load_data()
```
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

## Models :

* ***Net-A*** - A single layer perceptron with 10 outputs without any hidden layer
```
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_13 (Flatten) (None, 3072) 0
_________________________________________________________________
dense_23 (Dense) (None, 10) 30730
=================================================================
Total params: 30,730
Trainable params: 30,730
Non-trainable params: 0
```
* ***Net-B*** - Neural network with slightly more complication , that is , it has a hidden layer with 300 nodes and adds a non-linearity between the layers.
```
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
flatten_14 (Flatten) (None, 3072) 0
_________________________________________________________________
dense_24 (Dense) (None, 300) 921900
_________________________________________________________________
dense_25 (Dense) (None, 10) 3010
=================================================================
Total params: 924,910
Trainable params: 924,910
Non-trainable params: 0
```
* ***Net-C*** - A Convolutional Neural Network with one convolution layer , with 25 filtres of size 5x5 , with padding and activation function set to "relu". It is followed by a Max-pooling layer of size (2,2) with strides=2.Then after flattenning , a dense layer of 25 nodes is added before the final output layer with "softmax" activation.
```
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_9 (Conv2D) (None, 32, 32, 25) 1900
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 16, 16, 25) 0
_________________________________________________________________
flatten_15 (Flatten) (None, 6400) 0
_________________________________________________________________
dense_26 (Dense) (None, 25) 160025
_________________________________________________________________
dense_27 (Dense) (None, 10) 260
=================================================================
Total params: 162,185
Trainable params: 162,185
Non-trainable params: 0
```
## Visualisation :
A visualization of all the results with respect to the images and their classes are done , which gives an idea of the performance of each of the networks.
## Results :
Each of the networks are iterated through 50 epochs.
Test accuracy of the networks are given below:
```
Test accuracy of NetA- 10.180000215768814 %
Test accuracy of NetB- 46.639999747276306 %
Test accuracy of NetC- 63.98000121116638 %
```

0 comments on commit 68c6b42

Please sign in to comment.