Skip to content

Commit

Permalink
Tweaks
Browse files Browse the repository at this point in the history
  • Loading branch information
vbeffara committed Mar 17, 2024
1 parent d05f38f commit decdbad
Show file tree
Hide file tree
Showing 2 changed files with 7 additions and 15 deletions.
17 changes: 2 additions & 15 deletions RMT4.lean
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,7 @@ lemma ContinuousOn_uderiv (hU : IsOpen U) : ContinuousOn uderiv (𝓗 U) := by

def π“œ (U : Set β„‚) := {f ∈ 𝓗 U | MapsTo f U (closedBall (0 : β„‚) 1)}

lemma UniformlyBounded_π“œ : UniformlyBoundedOn ((↑) : π“œ U β†’ β„‚ β†’α΅€[compacts U] β„‚) U := by
rintro K ⟨hK1, _⟩
refine ⟨1, zero_lt_one, ?_⟩
rintro z hz x ⟨⟨f, hf⟩, rfl⟩
exact hf.2 (hK1 hz)
example : π“œ U = 𝓕K U (fun _ => closedBall 0 1) := 𝓕K_const.symm

lemma IsClosed_π“œ (hU : IsOpen U) : IsClosed (π“œ U) := by
suffices : IsClosed {f : β„‚ β†’α΅€[compacts U] β„‚ | MapsTo f U (closedBall 0 1)}
Expand All @@ -58,16 +54,7 @@ lemma IsClosed_π“œ (hU : IsOpen U) : IsClosed (π“œ U) := by
(mem_singleton z) ⟨singleton_subset_iff.2 hz, isCompact_singleton⟩).continuous)

lemma IsCompact_π“œ (hU : IsOpen U) : IsCompact (π“œ U) := by
have l1 (K) (hK : K ∈ compacts U) : EquicontinuousOn ((↑) : π“œ U β†’ β„‚ β†’α΅€[compacts U] β„‚) K :=
UniformlyBounded_π“œ.equicontinuous_on hU (Β·.2.1) hK
have l2 : βˆ€ K ∈ compacts U, βˆ€ x ∈ K, βˆƒ Q, IsCompact Q ∧ βˆ€ (f : π“œ U), f.val x ∈ Q := by
intro K hK x hx
refine ⟨closedBall 0 1, isCompact_of_isClosed_isBounded isClosed_ball isBounded_closedBall, ?_⟩
exact fun f => f.prop.2 (hK.1 hx)
rw [isCompact_iff_compactSpace]
refine ArzelaAscoli.compactSpace_of_closedEmbedding (fun _ hK => hK.2) ?_ l1 l2
refine ⟨⟨by tauto, fun f g => Subtype.ext⟩, ?_⟩
simpa [UniformOnFun.ofFun, range] using IsClosed_π“œ hU
simpa only [𝓕K_const] using isCompact_𝓕K hU (fun _ _ => isCompact_closedBall 0 1)

-- `π“˜ U` : holomorphic injections into the unit ball

Expand Down
5 changes: 5 additions & 0 deletions RMT4/montel.lean
Original file line number Diff line number Diff line change
Expand Up @@ -107,6 +107,11 @@ lemma UniformlyBoundedOn.equicontinuous_on
def 𝓕K (U : Set β„‚) (Q : Set β„‚ β†’ Set β„‚) : Set (β„‚ β†’α΅€[compacts U] β„‚) :=
{f ∈ 𝓗 U | βˆ€ K ∈ compacts U, MapsTo f K (Q K)}

lemma 𝓕K_const {Q : Set β„‚} : 𝓕K U (fun _ => Q) = {f ∈ 𝓗 U | MapsTo f U Q} := by
ext f ; simp [𝓕K, 𝓗] ; rintro - ; constructor <;> intro h
· exact fun z hz => h {z} ⟨by { rintro w rfl ; exact hz }, isCompact_singleton⟩ (mem_singleton z)
· exact fun K ⟨h1, _⟩ => h.mono_left h1

theorem isClosed_𝓕K (hU : IsOpen U) (hQ : βˆ€ K ∈ compacts U, IsCompact (Q K)) :
IsClosed (𝓕K U Q) := by
rw [𝓕K, setOf_and] ; apply (isClosed_𝓗 hU).inter
Expand Down

0 comments on commit decdbad

Please sign in to comment.