Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make transformed_data public and add initial docs #3084

Merged
merged 6 commits into from
Jun 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions altair/vegalite/v5/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -2658,7 +2658,7 @@ def to_dict(
validate=validate, format=format, ignore=ignore, context=context
)

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down Expand Up @@ -2859,7 +2859,7 @@ def __init__(
**kwds,
)

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down Expand Up @@ -2970,7 +2970,7 @@ def __or__(self, other):
copy |= other
return copy

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down Expand Up @@ -3067,7 +3067,7 @@ def __or__(self, other):
copy |= other
return copy

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down Expand Up @@ -3164,7 +3164,7 @@ def __and__(self, other):
copy &= other
return copy

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down Expand Up @@ -3260,7 +3260,7 @@ def __init__(self, data=Undefined, layer=(), **kwargs):
for prop in combined_dict:
self[prop] = combined_dict[prop]

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down Expand Up @@ -3375,7 +3375,7 @@ def __init__(
data=data, spec=spec, facet=facet, params=params, **kwargs
)

def _transformed_data(
def transformed_data(
self,
row_limit: Optional[int] = None,
exclude: Optional[Iterable[str]] = None,
Expand Down
64 changes: 64 additions & 0 deletions doc/user_guide/transform/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,70 @@ Transform Method
:ref:`user-guide-window-transform` :meth:`~Chart.transform_window` Compute a windowed aggregation
========================================= ========================================= ================================================================================

Accessing Transformed Data
joelostblom marked this conversation as resolved.
Show resolved Hide resolved
~~~~~~~~~~~~~~~~~~~~~~~~~~
When charts are displayed, data transformations are performed in the browser by
the Vega JavaScript library. It's often helpful to inspect transformed data
results in the process of building a chart. One approach is to display the
transformed data results in a table composed of :ref:`Text<user-guide-text-marks>`
marks as in the :ref:`gallery_scatter_linked_table` gallery example.

While this approach works, it's somewhat cumbersome, and still does not make it
possible to access the transformed data from Python. To make transformed data
results available in Python, Altair provides the :meth:`~Chart.transformed_data`
Chart method which integrates with `VegaFusion <https://vegafusion.io/>`_
to evaluate data transformations in the Python kernel.

First, install VegaFusion with the embed extras enabled.

.. code-block:: none

pip install "vegafusion[embed]"

Then create an Altair chart and call the :meth:`~Chart.transformed_data` method
to extract a pandas DataFrame containing the transformed data.

.. altair-plot::
:output: repr

import altair as alt
from vega_datasets import data

cars = data.cars.url
chart = alt.Chart(cars).mark_bar().encode(
y='Cylinders:O',
x='mean_acc:Q'
).transform_aggregate(
mean_acc='mean(Acceleration)',
groupby=["Cylinders"]
)
chart.transformed_data()

The :meth:`~Chart.transformed_data` method currently supports most, but not all,
of Altair's transforms. See the table below.

========================================= =========
Transform Supported
========================================= =========
:ref:`user-guide-aggregate-transform` ✔
:ref:`user-guide-bin-transform` ✔
:ref:`user-guide-calculate-transform` ✔
:ref:`user-guide-density-transform`
:ref:`user-guide-filter-transform` ✔
:ref:`user-guide-flatten-transform`
:ref:`user-guide-fold-transform` ✔
:ref:`user-guide-impute-transform` ✔
:ref:`user-guide-joinaggregate-transform` ✔
:ref:`user-guide-loess-transform`
:ref:`user-guide-lookup-transform`
:ref:`user-guide-pivot-transform` ✔
:ref:`user-guide-quantile-transform`
:ref:`user-guide-regression-transform`
:ref:`user-guide-sample-transform`
:ref:`user-guide-stack-transform` ✔
:ref:`user-guide-timeunit-transform` ✔
:ref:`user-guide-window-transform` ✔
========================================= =========

.. toctree::
:hidden:
Expand Down
6 changes: 3 additions & 3 deletions tests/test_transformed_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@
def test_primitive_chart_examples(filename, rows, cols):
source = pkgutil.get_data(examples_methods_syntax.__name__, filename)
chart = eval_block(source)
df = chart._transformed_data()
df = chart.transformed_data()
assert len(df) == rows
assert set(cols).issubset(set(df.columns))

Expand Down Expand Up @@ -101,7 +101,7 @@ def test_compound_chart_examples(filename, all_rows, all_cols):
chart = eval_block(source)
print(chart)

dfs = chart._transformed_data()
dfs = chart.transformed_data()
assert len(dfs) == len(all_rows)
for df, rows, cols in zip(dfs, all_rows, all_cols):
assert len(df) == rows
Expand All @@ -119,7 +119,7 @@ def test_transformed_data_exclude():
)

chart = (bar + rule + some_annotation).properties(width=600)
datasets = chart._transformed_data(exclude=["some_annotation"])
datasets = chart.transformed_data(exclude=["some_annotation"])

assert len(datasets) == 2
assert len(datasets[0]) == 52
Expand Down