-
-
Notifications
You must be signed in to change notification settings - Fork 6.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
149 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
from typing import Any, Dict, List, Optional | ||
|
||
import torch | ||
|
||
from vllm import _custom_ops as ops | ||
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase | ||
from vllm.model_executor.layers.quantization.base_config import ( | ||
QuantizationConfig) | ||
from vllm.model_executor.utils import set_weight_attrs | ||
|
||
|
||
def make_group_map(q_groups, num_qrows): | ||
gr = q_groups.tolist() | ||
group_map = [] | ||
num_groups = len(gr) // 2 | ||
|
||
for i in range(num_groups): | ||
bits = gr[i * 2] | ||
if i < num_groups - 1: | ||
qrows = gr[i * 2 + 3] - gr[i * 2 + 1] | ||
else: | ||
qrows = num_qrows - gr[i * 2 + 1] | ||
rows = qrows * 32 // bits | ||
for j in range(rows): | ||
group_map += [i] | ||
group_map += [rows - j] | ||
return torch.tensor(group_map, dtype=torch.short, device=q_groups.device) | ||
|
||
|
||
class Exl2Config(QuantizationConfig): | ||
"""Config class for Exl2.""" | ||
|
||
def __repr__(self) -> str: | ||
return "Exl2Config()" | ||
|
||
@classmethod | ||
def get_name(cls) -> str: | ||
return "exl2" | ||
|
||
@classmethod | ||
def get_supported_act_dtypes(cls) -> List[torch.dtype]: | ||
return [torch.half] | ||
|
||
@classmethod | ||
# Need to figure it out | ||
def get_min_capability(cls) -> int: | ||
return 60 | ||
|
||
@classmethod | ||
def get_config_filenames(cls) -> List[str]: | ||
return [] | ||
|
||
@classmethod | ||
def from_config(cls, config: Dict[str, Any]) -> "Exl2Config": | ||
return cls() | ||
|
||
def get_quant_method(self, layer: torch.nn.Module, | ||
prefix: str) -> Optional["Exl2LinearMethod"]: | ||
if isinstance(layer, LinearBase): | ||
return Exl2LinearMethod(self) | ||
return None | ||
|
||
def get_scaled_act_names(self) -> List[str]: | ||
return [] | ||
|
||
def merge_weight(self) -> bool: | ||
return False | ||
|
||
def quant_vocab(self) -> List[bool]: | ||
return [False, True] | ||
|
||
def support_fused_moe(self) -> bool: | ||
return False | ||
|
||
def rope_style(self) -> Optional[bool]: | ||
return None | ||
|
||
|
||
class Exl2LinearMethod(LinearMethodBase): | ||
"""Linear method for Exl2. | ||
Args: | ||
quant_config: The Exl2 quantization config. | ||
""" | ||
|
||
def __init__(self, quant_config: Exl2Config): | ||
self.quant_config = quant_config | ||
|
||
def create_weights(self, layer: torch.nn.Module, | ||
input_size_per_partition: int, | ||
output_partition_sizes: List[int], input_size: int, | ||
output_size: int, params_dtype: torch.dtype, | ||
**extra_weight_attr): | ||
# The shape of weight is unknown until load state dict | ||
# q_groups, q_invperm, q_scale, q_scale_max, q_weight, q_groups | ||
layer.exllama_state = 0 | ||
qweight = torch.nn.parameter.UninitializedParameter( | ||
requires_grad=False) | ||
set_weight_attrs(qweight, {"output_dim": 1, "ignore_warning": True}) | ||
layer.register_parameter("q_weight", qweight) | ||
qscale = torch.nn.parameter.UninitializedParameter(requires_grad=False) | ||
set_weight_attrs( | ||
qscale, { | ||
"output_dim": 1, | ||
"packed_dim": 1, | ||
"pack_factor": 8, | ||
"ignore_warning": True | ||
}) | ||
layer.register_parameter("q_scale", qscale) | ||
for name in ["q_groups", "q_invperm", "q_scale_max"]: | ||
fake_weight = torch.nn.parameter.UninitializedParameter( | ||
requires_grad=False) | ||
set_weight_attrs(fake_weight, {"ignore_warning": True}) | ||
layer.register_parameter(name, fake_weight) | ||
|
||
def apply(self, | ||
layer: torch.nn.Module, | ||
x: torch.Tensor, | ||
bias: Optional[torch.Tensor] = None) -> torch.Tensor: | ||
out_shape = x.shape[:-1] + (layer.q_weight.shape[-1], ) | ||
reshaped_x = x.reshape(-1, x.shape[-1]) | ||
|
||
if layer.exllama_state == 0: | ||
layer.q_scale_max /= 256 | ||
layer.q_invperm = layer.q_invperm.short() | ||
if not hasattr(layer, 'q_perm'): | ||
layer.q_perm = torch.argsort(layer.q_invperm).to(torch.short) | ||
if not hasattr(layer, 'q_group_map'): | ||
layer.q_group_map = make_group_map(layer.q_groups, | ||
layer.q_weight.shape[0]) | ||
layer.q_matrix = ops.exl2_make_q_matrix( | ||
layer.q_weight, | ||
layer.q_perm, | ||
layer.q_invperm, | ||
layer.q_scale, | ||
layer.q_scale_max, | ||
layer.q_groups, | ||
layer.q_group_map, | ||
) | ||
layer.exllama_state = 1 | ||
|
||
output = ops.exl2_gemm(reshaped_x, layer.q_matrix) | ||
|
||
if bias is not None: | ||
output.add_(bias) | ||
return output.reshape(out_shape) |