-
-
Notifications
You must be signed in to change notification settings - Fork 5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
make telechat2 config compatiable with Llama
Signed-off-by: Isotr0py <[email protected]>
- Loading branch information
Showing
3 changed files
with
81 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# adapted from https://www.modelscope.cn/models/TeleAI/TeleChat2-3B/resolve/master/configuration_telechat2.py | ||
""" Telechat configuration compatible with LlamaConfig. """ | ||
|
||
from transformers.configuration_utils import PretrainedConfig | ||
|
||
|
||
class Telechat2Config(PretrainedConfig): | ||
""" | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model. | ||
hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. | ||
ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states. | ||
n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer | ||
n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer. | ||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. | ||
initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks | ||
hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs | ||
use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions. | ||
training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning. | ||
logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation. | ||
embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm. | ||
""" | ||
|
||
model_type = "telechat" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
attribute_map = { | ||
"num_hidden_layers": "n_layer", | ||
"num_attention_heads": "n_head", | ||
"intermediate_size": "ffn_hidden_size", | ||
"rms_norm_eps": "layer_norm_epsilon" | ||
} | ||
|
||
def __init__( | ||
self, | ||
vocab_size=160256, | ||
hidden_size=4096, | ||
n_layer=30, | ||
n_head=32, | ||
layer_norm_epsilon=1e-5, | ||
initializer_range=0.02, | ||
use_cache=True, | ||
bos_token_id=1, | ||
eos_token_id=2, | ||
apply_residual_connection_post_layernorm=False, | ||
hidden_dropout=0.0, | ||
attention_dropout=0.0, | ||
ffn_hidden_size=12288, | ||
training_seqlen = 8192, | ||
logn = True, | ||
embed_layernorm = False, | ||
hidden_act="silu", | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
n_embed = kwargs.pop("n_embed", None) | ||
self.hidden_size = hidden_size if n_embed is None else n_embed | ||
self.n_layer = n_layer | ||
self.n_head = n_head | ||
self.layer_norm_epsilon = layer_norm_epsilon | ||
self.initializer_range = initializer_range | ||
self.use_cache = use_cache | ||
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm | ||
self.hidden_dropout = hidden_dropout | ||
self.attention_dropout = attention_dropout | ||
self.bos_token_id = bos_token_id | ||
self.eos_token_id = eos_token_id | ||
self.logn = logn | ||
self.training_seqlen = training_seqlen | ||
self.embed_layernorm = embed_layernorm | ||
self.num_key_value_heads= kwargs.pop("num_key_value_heads", None) | ||
self.ffn_hidden_size = ffn_hidden_size | ||
self.hidden_act = hidden_act | ||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |