Skip to content

Commit

Permalink
Merge branch 'main' into tms/flux_integration
Browse files Browse the repository at this point in the history
  • Loading branch information
tlrmchlsmth committed Sep 18, 2024
2 parents 4991420 + 56c3de0 commit 9545e02
Show file tree
Hide file tree
Showing 757 changed files with 71,981 additions and 14,876 deletions.
35 changes: 21 additions & 14 deletions .buildkite/check-wheel-size.py
Original file line number Diff line number Diff line change
@@ -1,36 +1,43 @@
import os
import sys
import zipfile

MAX_SIZE_MB = 250
# Read the VLLM_MAX_SIZE_MB environment variable, defaulting to 250 MB
VLLM_MAX_SIZE_MB = int(os.environ.get('VLLM_MAX_SIZE_MB', 250))


def print_top_10_largest_files(zip_file):
"""Print the top 10 largest files in the given zip file."""
with zipfile.ZipFile(zip_file, 'r') as z:
file_sizes = [(f, z.getinfo(f).file_size) for f in z.namelist()]
file_sizes.sort(key=lambda x: x[1], reverse=True)
for f, size in file_sizes[:10]:
print(f"{f}: {size/(1024*1024)} MBs uncompressed.")
print(f"{f}: {size / (1024 * 1024):.2f} MBs uncompressed.")


def check_wheel_size(directory):
"""Check the size of .whl files in the given directory."""
for root, _, files in os.walk(directory):
for f in files:
if f.endswith(".whl"):
wheel_path = os.path.join(root, f)
wheel_size = os.path.getsize(wheel_path)
wheel_size_mb = wheel_size / (1024 * 1024)
if wheel_size_mb > MAX_SIZE_MB:
print(
f"Wheel {wheel_path} is too large ({wheel_size_mb} MB) "
f"compare to the allowed size ({MAX_SIZE_MB} MB).")
for file_name in files:
if file_name.endswith(".whl"):
wheel_path = os.path.join(root, file_name)
wheel_size_mb = os.path.getsize(wheel_path) / (1024 * 1024)
if wheel_size_mb > VLLM_MAX_SIZE_MB:
print(f"Not allowed: Wheel {wheel_path} is larger "
f"({wheel_size_mb:.2f} MB) than the limit "
f"({VLLM_MAX_SIZE_MB} MB).")
print_top_10_largest_files(wheel_path)
return 1
else:
print(f"Wheel {wheel_path} is within the allowed size "
f"({wheel_size_mb} MB).")
f"({wheel_size_mb:.2f} MB).")
return 0


if __name__ == "__main__":
import sys
sys.exit(check_wheel_size(sys.argv[1]))
if len(sys.argv) < 2:
print("Usage: python check-wheel-size.py <directory>")
sys.exit(1)

directory = sys.argv[1]
sys.exit(check_wheel_size(directory))
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@ tasks:
value: 0.664
limit: 1000
num_fewshot: 5
trust_remote_code: True
4 changes: 2 additions & 2 deletions .buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-QQQ.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@ tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.409
value: 0.419
- name: "exact_match,flexible-extract"
value: 0.406
value: 0.416
limit: 1000
num_fewshot: 5
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nvidia/Minitron-4B-Base -b auto -l 1000 -f 5 -t 1
model_name: "nvidia/Minitron-4B-Base"
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m mgoin/Minitron-4B-Base-FP8 -b auto -l 1000 -f 5 -t 1
model_name: "mgoin/Minitron-4B-Base-FP8"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.252
value: 0.233
- name: "exact_match,flexible-extract"
value: 0.252
value: 0.236
limit: 1000
num_fewshot: 5
3 changes: 1 addition & 2 deletions .buildkite/lm-eval-harness/configs/models-small.txt
Original file line number Diff line number Diff line change
@@ -1,10 +1,9 @@
Meta-Llama-3-8B-Instruct.yaml
Meta-Llama-3-8B-Instruct-FP8.yaml
Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Minitron-4B-Base.yaml
Minitron-4B-Base-FP8.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Qwen2-1.5B-Instruct-FP8W8.yaml
Meta-Llama-3-8B-QQQ.yaml
7 changes: 5 additions & 2 deletions .buildkite/lm-eval-harness/test_lm_eval_correctness.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
import numpy
import yaml

RTOL = 0.02
RTOL = 0.05
TEST_DATA_FILE = os.environ.get(
"LM_EVAL_TEST_DATA_FILE",
".buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct.yaml")
Expand All @@ -23,9 +23,12 @@


def launch_lm_eval(eval_config):
trust_remote_code = eval_config.get('trust_remote_code', False)

model_args = f"pretrained={eval_config['model_name']}," \
f"tensor_parallel_size={TP_SIZE}," \
f"add_bos_token=true"
f"add_bos_token=true," \
f"trust_remote_code={trust_remote_code}"

results = lm_eval.simple_evaluate(
model="vllm",
Expand Down
9 changes: 5 additions & 4 deletions .buildkite/nightly-benchmarks/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,17 +34,18 @@ See [vLLM performance dashboard](https://perf.vllm.ai) for the latest performan

Performance benchmark will be triggered when:
- A PR being merged into vllm.
- Every commit for those PRs with `perf-benchmarks` label.
- Every commit for those PRs with `perf-benchmarks` label AND `ready` label.

Nightly benchmark will be triggered when:
- Every commit for those PRs with `nightly-benchmarks` label.
- Every commit for those PRs with `perf-benchmarks` label and `nightly-benchmarks` label.




## Performance benchmark details

See [descriptions.md](tests/descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.

See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.


#### Latency test
Expand All @@ -68,7 +69,7 @@ Here is an example of one test inside `latency-tests.json`:

In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-benchmarks-suite.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`

Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.

Expand Down
5 changes: 2 additions & 3 deletions .buildkite/nightly-benchmarks/benchmark-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,7 @@ steps:
containers:
- image: badouralix/curl-jq
command:
- sh
- .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
- wait
- label: "A100"
agents:
Expand All @@ -21,7 +20,7 @@ steps:
containers:
- image: public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:$BUILDKITE_COMMIT
command:
- bash .buildkite/nightly-benchmarks/run-benchmarks-suite.sh
- bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh
resources:
limits:
nvidia.com/gpu: 8
Expand Down
Original file line number Diff line number Diff line change
@@ -1,47 +1,42 @@

## Latency tests

This test suite aims to test vllm's end-to-end latency under a controlled setup.

- Input length: 32 tokens.
- Output length: 128 tokens.
- Batch size: fixed (8).
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: end-to-end latency (mean, median, p99).

### Latency benchmarking results

{latency_tests_markdown_table}

## Throughput tests

This test suite aims to test vllm's throughput.
## Throughput tests

- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm to achieve maximum throughput.
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- Evaluation metrics: throughput.

### Throughput benchmarking results

{throughput_tests_markdown_table}

## Serving tests

This test suite aims to test vllm's real serving metrics.
## Serving tests

- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
- Output length: the corresponding output length of these 200 prompts.
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
- Models: llama-3 8B, llama-3 70B, mixtral 8x7B.
- Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
- We also added a speculative decoding test for llama-3 70B, under QPS 2
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).

### Serving benchmarking results

{serving_tests_markdown_table}


## json version of the benchmarking tables

This section contains the data of the markdown tables above in JSON format.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -174,8 +174,8 @@ def results_to_json(latency, throughput, serving):
# document the result
with open(results_folder / "benchmark_results.md", "w") as f:

results = read_markdown(
"../.buildkite/nightly-benchmarks/tests/descriptions.md")
results = read_markdown("../.buildkite/nightly-benchmarks/" +
"performance-benchmarks-descriptions.md")
results = results.format(
latency_tests_markdown_table=latency_md_table,
throughput_tests_markdown_table=throughput_md_table,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ check_hf_token() {
ensure_sharegpt_downloaded() {
local FILE=ShareGPT_V3_unfiltered_cleaned_split.json
if [ ! -f "$FILE" ]; then
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
else
echo "$FILE already exists."
echo "$FILE already exists."
fi
}

Expand Down Expand Up @@ -68,35 +68,38 @@ wait_for_server() {
done' && return 0 || return 1
}

kill_gpu_processes() {
# kill all processes on GPU.
pids=$(nvidia-smi --query-compute-apps=pid --format=csv,noheader)
if [ -z "$pids" ]; then
echo "No GPU processes found."
kill_processes_launched_by_current_bash() {
# Kill all python processes launched from current bash script
current_shell_pid=$$
processes=$(ps -eo pid,ppid,command | awk -v ppid="$current_shell_pid" -v proc="$1" '$2 == ppid && $3 ~ proc {print $1}')
if [ -n "$processes" ]; then
echo "Killing the following processes matching '$1':"
echo "$processes"
echo "$processes" | xargs kill -9
else
for pid in $pids; do
kill -9 "$pid"
echo "Killed process with PID: $pid"
done

echo "All GPU processes have been killed."
echo "No processes found matching '$1'."
fi
}

kill_gpu_processes() {

# waiting for GPU processes to be fully killed
# loop while nvidia-smi returns any processes
while [ -n "$(nvidia-smi --query-compute-apps=pid --format=csv,noheader)" ]; do
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pkill -f pt_main_thread
# this line doesn't work now
# ps aux | grep python | grep openai | awk '{print $2}' | xargs -r kill -9
pkill -f python3
pkill -f /usr/bin/python3


# wait until GPU memory usage smaller than 1GB
while [ $(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1) -ge 1000 ]; do
sleep 1
echo "Waiting for GPU processes to be killed"
done

# remove vllm config file
rm -rf ~/.config/vllm

# Print the GPU memory usage
# so that we know if all GPU processes are killed.
gpu_memory_usage=$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits -i 0)
# The memory usage should be 0 MB.
echo "GPU 0 Memory Usage: $gpu_memory_usage MB"
}

upload_to_buildkite() {
Expand All @@ -114,7 +117,7 @@ upload_to_buildkite() {
fi

# Use the determined command to annotate and upload artifacts
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" < $RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND annotate --style "info" --context "$BUILDKITE_LABEL-benchmark-results" <$RESULTS_FOLDER/benchmark_results.md
$BUILDKITE_AGENT_COMMAND artifact upload "$RESULTS_FOLDER/*"
}

Expand Down Expand Up @@ -166,7 +169,7 @@ run_latency_tests() {
latency_command: $latency,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/$test_name.commands"
echo "$jq_output" >"$RESULTS_FOLDER/$test_name.commands"

# run the benchmark
eval "$latency_command"
Expand All @@ -176,7 +179,6 @@ run_latency_tests() {
done
}


run_throughput_tests() {
# run throughput tests using `benchmark_throughput.py`
# $1: a json file specifying throughput test cases
Expand Down Expand Up @@ -224,7 +226,7 @@ run_throughput_tests() {
throughput_command: $command,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/$test_name.commands"
echo "$jq_output" >"$RESULTS_FOLDER/$test_name.commands"

# run the benchmark
eval "$throughput_command"
Expand Down Expand Up @@ -256,7 +258,6 @@ run_serving_tests() {
continue
fi


# get client and server arguments
server_params=$(echo "$params" | jq -r '.server_parameters')
client_params=$(echo "$params" | jq -r '.client_parameters')
Expand Down Expand Up @@ -334,7 +335,7 @@ run_serving_tests() {
client_command: $client,
gpu_type: $gpu
}')
echo "$jq_output" > "$RESULTS_FOLDER/${new_test_name}.commands"
echo "$jq_output" >"$RESULTS_FOLDER/${new_test_name}.commands"

done

Expand All @@ -351,6 +352,7 @@ main() {
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)

# get the current IP address, required by benchmark_serving.py
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
Expand All @@ -369,7 +371,6 @@ main() {
run_latency_tests $QUICK_BENCHMARK_ROOT/tests/latency-tests.json
run_throughput_tests $QUICK_BENCHMARK_ROOT/tests/throughput-tests.json


# postprocess benchmarking results
pip install tabulate pandas
python3 $QUICK_BENCHMARK_ROOT/scripts/convert-results-json-to-markdown.py
Expand Down
4 changes: 3 additions & 1 deletion .buildkite/nightly-benchmarks/scripts/wait-for-image.sh
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,11 @@
TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token)
URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT"

TIMEOUT_SECONDS=10

retries=0
while [ $retries -lt 1000 ]; do
if [ $(curl -s -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then
if [ $(curl -s --max-time $TIMEOUT_SECONDS -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then
exit 0
fi

Expand Down
Loading

0 comments on commit 9545e02

Please sign in to comment.