Skip to content

Commit

Permalink
support qqq(w4a8) for vllm
Browse files Browse the repository at this point in the history
  • Loading branch information
HandH1998 committed Jul 25, 2024
1 parent 5689e25 commit ac32531
Show file tree
Hide file tree
Showing 15 changed files with 1,963 additions and 84 deletions.
11 changes: 11 additions & 0 deletions .buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-QQQ.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m HandH1998/QQQ-Llama-3-8b-g128 -b 32 -l 250 -f 5 -t 1
model_name: "HandH1998/QQQ-Llama-3-8b-g128"
tasks:
- name: "gsm8k"
metrics:
- name: "exact_match,strict-match"
value: 0.484
- name: "exact_match,flexible-extract"
value: 0.492
limit: 250
num_fewshot: 5
1 change: 1 addition & 0 deletions .buildkite/lm-eval-harness/configs/models-small.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,4 @@ Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml
Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml
Qwen2-1.5B-Instruct-INT8-compressed-tensors.yaml
Meta-Llama-3-8B-QQQ.yaml
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
Expand Down
7 changes: 7 additions & 0 deletions csrc/ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -114,6 +114,13 @@ void cutlass_scaled_mm(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b_scales,
c10::optional<torch::Tensor> const& bias);

torch::Tensor marlin_qqq_gemm(torch::Tensor const& a,
torch::Tensor const& b_q_weight,
torch::Tensor const& s_tok,
torch::Tensor const& s_ch,
torch::Tensor const& s_group,
torch::Tensor& workspace, int64_t size_m,
int64_t size_n, int64_t size_k);
#endif

void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
Expand Down
32 changes: 32 additions & 0 deletions csrc/quantization/marlin/dense/common/base.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
/*
* Modified by HandH1998
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }

// Instances of `Vec` are used to organize groups of >>registers<<, as needed
// for instance as inputs to tensor core operations. Consequently, all
// corresponding index accesses must be compile-time constants, which is why we
// extensively use `#pragma unroll` throughout the kernel code to guarantee
// this.
template <typename T, int n>
struct Vec {
T elems[n];
__device__ T& operator[](int i) { return elems[i]; }
};
89 changes: 89 additions & 0 deletions csrc/quantization/marlin/dense/common/mem.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
/*
* Modified by HandH1998
* Modified by Neural Magic
* Copyright (C) Marlin.2024 Elias Frantar
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

// Predicated asynchronous global->shared copy; used for inputs A where we apply
// predication to handle batchsizes that are not multiples of 16.
__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr,
bool pred = true) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
"}\n" ::"r"((int)pred),
"r"(smem), "l"(glob_ptr), "n"(BYTES));
}

// Asynchronous global->shared copy
__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
}

// Async copy fence.
__device__ inline void cp_async_fence() {
asm volatile("cp.async.commit_group;\n" ::);
}

// Wait until at most `n` async copy stages are still pending.
template <int n>
__device__ inline void cp_async_wait() {
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
}

// Wait until barrier reaches `count`, then lock for current threadblock.
__device__ inline void barrier_acquire(int* lock, int count) {
if (threadIdx.x == 0) {
int state = -1;
do
// Guarantee that subsequent writes by this threadblock will be visible
// globally.
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
: "=r"(state)
: "l"(lock));
while (state != count);
}
__syncthreads();
}

// Release barrier and increment visitation count.
__device__ inline void barrier_release(int* lock, bool reset = false) {
__syncthreads();
if (threadIdx.x == 0) {
if (reset) {
lock[0] = 0;
return;
}
int val = 1;
// Make sure that all writes since acquiring this barrier are visible
// globally, while releasing the barrier.
asm volatile("fence.acq_rel.gpu;\n");
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
:
: "l"(lock), "r"(val));
}
}
90 changes: 6 additions & 84 deletions csrc/quantization/marlin/dense/marlin_cuda_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -25,30 +25,22 @@

#include <iostream>

#include "common/base.h"

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include "common/mem.h"
#endif

template <typename T>
inline std::string str(T x) {
return std::to_string(x);
}

namespace marlin_dense {

constexpr int ceildiv(int a, int b) { return (a + b - 1) / b; }

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800

// Instances of `Vec` are used to organize groups of >>registers<<, as needed
// for instance as inputs to tensor core operations. Consequently, all
// corresponding index accesses must be compile-time constants, which is why we
// extensively use `#pragma unroll` throughout the kernel code to guarantee
// this.
template <typename T, int n>
struct Vec {
T elems[n];
__device__ T& operator[](int i) { return elems[i]; }
};

using I4 = Vec<int, 4>;

// Matrix fragments for tensor core instructions; their precise layout is
// documented here:
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-floating-point-type
Expand All @@ -57,43 +49,6 @@ using FragB = Vec<half2, 2>;
using FragC = Vec<float, 4>;
using FragS = Vec<half2, 1>; // quantization scales

// Predicated asynchronous global->shared copy; used for inputs A where we apply
// predication to handle batchsizes that are not multiples of 16.
__device__ inline void cp_async4_pred(void* smem_ptr, const void* glob_ptr,
bool pred = true) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
"}\n" ::"r"((int)pred),
"r"(smem), "l"(glob_ptr), "n"(BYTES));
}

// Asynchronous global->shared copy
__device__ inline void cp_async4(void* smem_ptr, const void* glob_ptr) {
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
}

// Async copy fence.
__device__ inline void cp_async_fence() {
asm volatile("cp.async.commit_group;\n" ::);
}

// Wait until at most `n` async copy stages are still pending.
template <int n>
__device__ inline void cp_async_wait() {
asm volatile("cp.async.wait_group %0;\n" ::"n"(n));
}

// m16n8k16 tensor core mma instruction with fp16 inputs and fp32
// output/accumulation.
__device__ inline void mma(const FragA& a_frag, const FragB& frag_b,
Expand Down Expand Up @@ -164,39 +119,6 @@ __device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
frag_b[1] = __hmul2(frag_b[1], s);
}

// Wait until barrier reaches `count`, then lock for current threadblock.
__device__ inline void barrier_acquire(int* lock, int count) {
if (threadIdx.x == 0) {
int state = -1;
do
// Guarantee that subsequent writes by this threadblock will be visible
// globally.
asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n"
: "=r"(state)
: "l"(lock));
while (state != count);
}
__syncthreads();
}

// Release barrier and increment visitation count.
__device__ inline void barrier_release(int* lock, bool reset = false) {
__syncthreads();
if (threadIdx.x == 0) {
if (reset) {
lock[0] = 0;
return;
}
int val = 1;
// Make sure that all writes since acquiring this barrier are visible
// globally, while releasing the barrier.
asm volatile("fence.acq_rel.gpu;\n");
asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n"
:
: "l"(lock), "r"(val));
}
}

template <const int threads, // number of threads in a threadblock
const int thread_m_blocks, // number of 16x16 blocks in the m
// dimension (batchsize) of the
Expand Down
Loading

0 comments on commit ac32531

Please sign in to comment.