Skip to content

Commit

Permalink
Merge branch 'main' into habana_upstream
Browse files Browse the repository at this point in the history
  • Loading branch information
kzawora-intel authored Oct 29, 2024
2 parents 397405b + 622b7ab commit acec97b
Show file tree
Hide file tree
Showing 27 changed files with 104 additions and 108 deletions.
6 changes: 3 additions & 3 deletions benchmarks/kernels/benchmark_layernorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@
import torch

from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
seed_everything)
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser


@torch.inference_mode()
Expand All @@ -16,7 +16,7 @@ def main(num_tokens: int,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device("cuda")

layer = RMSNorm(hidden_size).to(dtype=dtype)
Expand Down
7 changes: 4 additions & 3 deletions benchmarks/kernels/benchmark_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
from transformers import AutoConfig

from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.utils import FlexibleArgumentParser, seed_everything
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser


class BenchmarkConfig(TypedDict):
Expand Down Expand Up @@ -167,7 +168,7 @@ class BenchmarkWorker:

def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
seed_everything(seed)
current_platform.seed_everything(seed)
self.seed = seed

def benchmark(
Expand All @@ -181,7 +182,7 @@ def benchmark(
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> Tuple[Dict[str, int], float]:
seed_everything(self.seed)
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)
Expand Down
5 changes: 3 additions & 2 deletions benchmarks/kernels/benchmark_paged_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,9 @@
import torch

from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random, seed_everything)
create_kv_caches_with_random)

NUM_BLOCKS = 1024
PARTITION_SIZE = 512
Expand All @@ -28,7 +29,7 @@ def main(
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)

scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,
Expand Down
6 changes: 3 additions & 3 deletions benchmarks/kernels/benchmark_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@
import torch

from vllm import _custom_ops as ops
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
seed_everything)
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser


@torch.inference_mode()
Expand All @@ -17,7 +17,7 @@ def main(num_tokens: int,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device("cuda")

x = torch.randn(num_tokens, hidden_size, dtype=dtype)
Expand Down
5 changes: 3 additions & 2 deletions benchmarks/kernels/benchmark_rope.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@

from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
get_rope)
from vllm.utils import FlexibleArgumentParser, seed_everything
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser


def benchmark_rope_kernels_multi_lora(
Expand All @@ -22,7 +23,7 @@ def benchmark_rope_kernels_multi_lora(
max_position: int = 8192,
base: int = 10000,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
Expand Down
6 changes: 3 additions & 3 deletions tests/kernels/test_activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from vllm.model_executor.layers.activation import (FastGELU, FatreluAndMul,
GeluAndMul, NewGELU,
QuickGELU, SiluAndMul)
from vllm.utils import seed_everything
from vllm.platforms import current_platform

from .allclose_default import get_default_atol, get_default_rtol

Expand Down Expand Up @@ -37,7 +37,7 @@ def test_act_and_mul(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, 2 * d, dtype=dtype)
if activation == "silu":
Expand Down Expand Up @@ -85,7 +85,7 @@ def test_activation(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype)
layer = activation[0]()
Expand Down
6 changes: 3 additions & 3 deletions tests/kernels/test_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import get_max_shared_memory_bytes, seed_everything
from vllm.utils import get_max_shared_memory_bytes

from .allclose_default import get_default_atol, get_default_rtol

Expand Down Expand Up @@ -144,7 +144,7 @@ def test_paged_attention(
or (version == "rocm" and head_size not in (64, 128))):
pytest.skip()

seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
Expand Down Expand Up @@ -382,7 +382,7 @@ def test_multi_query_kv_attention(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
# As the xformers library is already tested with its own tests, we can use
Expand Down
6 changes: 3 additions & 3 deletions tests/kernels/test_awq_triton.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

from vllm.model_executor.layers.quantization.awq_triton import (
AWQ_TRITON_SUPPORTED_GROUP_SIZES, awq_dequantize_triton, awq_gemm_triton)
from vllm.utils import seed_everything
from vllm.platforms import current_platform

device = "cuda"

Expand Down Expand Up @@ -80,7 +80,7 @@ def test_dequantize(qweight_rows, qweight_cols, group_size):
zeros_cols = qweight_cols
zeros_dtype = torch.int32

seed_everything(0)
current_platform.seed_everything(0)

qweight = torch.randint(0,
torch.iinfo(torch.int32).max,
Expand Down Expand Up @@ -134,7 +134,7 @@ def test_gemm(N, K, M, splitK, group_size):
qzeros_rows = scales_rows
qzeros_cols = qweight_cols

seed_everything(0)
current_platform.seed_everything(0)

input = torch.rand((input_rows, input_cols),
dtype=input_dtype,
Expand Down
6 changes: 3 additions & 3 deletions tests/kernels/test_blocksparse_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from vllm.attention.ops.blocksparse_attention.interface import (
LocalStridedBlockSparseAttn)
from vllm.platforms import current_platform
from vllm.utils import get_max_shared_memory_bytes, seed_everything
from vllm.utils import get_max_shared_memory_bytes

from .allclose_default import get_default_atol, get_default_rtol

Expand Down Expand Up @@ -173,7 +173,7 @@ def test_paged_attention(
blocksparse_block_size: int,
blocksparse_head_sliding_step: int,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
Expand Down Expand Up @@ -384,7 +384,7 @@ def test_varlen_blocksparse_attention_prefill(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
# As the xformers library is already tested with its own tests, we can use
Expand Down
12 changes: 6 additions & 6 deletions tests/kernels/test_cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck
from vllm import _custom_ops as ops
from vllm.utils import seed_everything
from vllm.platforms import current_platform

COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')]
DTYPES = [torch.half, torch.bfloat16, torch.float]
Expand Down Expand Up @@ -56,7 +56,7 @@ def test_copy_blocks(
) -> None:
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Generate random block mappings where each source block is mapped to two
# destination blocks.
Expand Down Expand Up @@ -132,7 +132,7 @@ def test_reshape_and_cache(
) -> None:
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Create a random slot mapping.
num_slots = block_size * num_blocks
Expand Down Expand Up @@ -224,7 +224,7 @@ def test_reshape_and_cache_flash(
device: str,
kv_cache_dtype: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)

# Create a random slot mapping.
Expand Down Expand Up @@ -339,7 +339,7 @@ def test_swap_blocks(
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()

seed_everything(seed)
current_platform.seed_everything(seed)

src_device = device if direction[0] == "cuda" else 'cpu'
dst_device = device if direction[1] == "cuda" else 'cpu'
Expand Down Expand Up @@ -408,7 +408,7 @@ def test_fp8_e4m3_conversion(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)

low = -224.0
high = 224.0
Expand Down
12 changes: 6 additions & 6 deletions tests/kernels/test_causal_conv1d.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.utils import seed_everything
from vllm.platforms import current_platform


def causal_conv1d_ref(
Expand Down Expand Up @@ -70,7 +70,7 @@ def causal_conv1d_update_ref(x,
bias: (dim,)
cache_seqlens: (batch,), dtype int32.
If not None, the conv_state is treated as a circular buffer.
The conv_state will be updated by copying x to the
The conv_state will be updated by copying x to the
conv_state starting at the index
@cache_seqlens % state_len before performing the convolution.
Expand Down Expand Up @@ -161,7 +161,7 @@ def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation,
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
x = torch.randn(batch, dim, seqlen, device=device,
dtype=itype).contiguous()

Expand Down Expand Up @@ -223,7 +223,7 @@ def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation,
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
batch = 2
x = torch.randn(batch, dim, seqlen, device=device, dtype=itype)
x_ref = x.clone()
Expand Down Expand Up @@ -270,7 +270,7 @@ def test_causal_conv1d_update_with_batch_gather(with_padding, dim, width,
rtol, atol = 1e-2, 5e-2

# set seed
seed_everything(0)
current_platform.seed_everything(0)

batch_size = 3
padding = 5 if with_padding else 0
Expand Down Expand Up @@ -343,7 +343,7 @@ def test_causal_conv1d_varlen(with_padding, dim, seqlen, width, has_bias,
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
seqlens = []
batch_size = 4
if seqlen < 10:
Expand Down
6 changes: 3 additions & 3 deletions tests/kernels/test_flash_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
import pytest
import torch

from vllm.utils import seed_everything
from vllm.platforms import current_platform
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
flash_attn_with_kvcache)

Expand Down Expand Up @@ -91,7 +91,7 @@ def test_flash_attn_with_paged_kv(
sliding_window: Optional[int],
) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
Expand Down Expand Up @@ -161,7 +161,7 @@ def test_varlen_with_paged_kv(
num_blocks: int,
) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
Expand Down
10 changes: 5 additions & 5 deletions tests/kernels/test_flashinfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import pytest
import torch

from vllm.utils import seed_everything
from vllm.platforms import current_platform

NUM_HEADS = [(16, 16), (32, 8), (64, 8), (6, 1)]
HEAD_SIZES = [128, 256]
Expand Down Expand Up @@ -84,7 +84,7 @@ def test_flashinfer_decode_with_paged_kv(
soft_cap: Optional[float],
) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
Expand Down Expand Up @@ -170,7 +170,7 @@ def test_flashinfer_prefill_with_paged_kv(seq_lens: List[Tuple[int, int]],
block_size: int,
soft_cap: Optional[float]) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
Expand Down Expand Up @@ -268,7 +268,7 @@ def test_flashinfer_prefill_with_paged_fp8_kv(
head_size: int, dtype: torch.dtype, block_size: int,
soft_cap: Optional[float]) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
Expand Down Expand Up @@ -381,7 +381,7 @@ def test_flashinfer_decode_with_paged_fp8_kv(
) -> None:
# test doesn't work for num_heads = (16,16)
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
Expand Down
Loading

0 comments on commit acec97b

Please sign in to comment.