-
-
Notifications
You must be signed in to change notification settings - Fork 4.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into fix_guided_dec_with_mistral_tokenizer_mode
Signed-off-by: Wallas Santos <[email protected]>
- Loading branch information
Showing
181 changed files
with
7,589 additions
and
2,567 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
#!/bin/bash | ||
|
||
# This script build the GH200 docker image and run the offline inference inside the container. | ||
# It serves a sanity check for compilation and basic model usage. | ||
set -ex | ||
|
||
# Try building the docker image | ||
DOCKER_BUILDKIT=1 docker build . \ | ||
--target vllm-openai \ | ||
--platform "linux/arm64" \ | ||
-t gh200-test \ | ||
--build-arg max_jobs=66 \ | ||
--build-arg nvcc_threads=2 \ | ||
--build-arg torch_cuda_arch_list="9.0+PTX" \ | ||
--build-arg vllm_fa_cmake_gpu_arches="90-real" | ||
|
||
# Setup cleanup | ||
remove_docker_container() { docker rm -f gh200-test || true; } | ||
trap remove_docker_container EXIT | ||
remove_docker_container | ||
|
||
# Run the image and test offline inference | ||
docker run --name gh200-test --gpus=all --entrypoint="" gh200-test bash -c ' | ||
python3 examples/offline_inference.py | ||
' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
import pickle as pkl | ||
import time | ||
from dataclasses import dataclass | ||
from itertools import product | ||
from typing import Callable, Iterable, List, Optional | ||
|
||
import torch | ||
import torch.utils.benchmark as TBenchmark | ||
from torch.utils.benchmark import Measurement as TMeasurement | ||
from tqdm import tqdm | ||
|
||
import vllm._custom_ops as ops | ||
from vllm.model_executor.layers.layernorm import RMSNorm | ||
|
||
|
||
@dataclass | ||
class bench_params_t: | ||
num_tokens: int | ||
hidden_size: int | ||
add_residual: bool | ||
dtype: torch.dtype | ||
|
||
def description(self): | ||
return (f'N {self.num_tokens} ' | ||
f'x D {self.hidden_size} ' | ||
f'x R {self.add_residual} ' | ||
f'x DT {self.dtype}') | ||
|
||
|
||
def get_bench_params() -> List[bench_params_t]: | ||
## Test Fixtures | ||
NUM_TOKENS = [2**x for x in range(11)] | ||
HIDDEN_SIZES = list(range(1024, 8129, 1024)) | ||
ADD_RESIDUAL = [True, False] | ||
DTYPES = [torch.bfloat16, torch.float] | ||
|
||
combinations = product(NUM_TOKENS, HIDDEN_SIZES, ADD_RESIDUAL, DTYPES) | ||
bench_params = list(map(lambda x: \ | ||
bench_params_t(x[0], x[1], x[2], x[3]), combinations)) | ||
return bench_params | ||
|
||
|
||
# Reference impls | ||
def unfused_int8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor, | ||
residual: Optional[torch.Tensor], | ||
quant_dtype: torch.dtype): | ||
# Norm | ||
torch_out = None | ||
if residual is None: | ||
torch_out = rms_norm_layer.forward_cuda(x, residual) | ||
else: | ||
torch_out, _ = rms_norm_layer.forward_cuda(x, residual) | ||
|
||
# Quant | ||
torch_out, _, _ = ops.scaled_int8_quant(torch_out) | ||
|
||
|
||
def unfused_fp8_impl(rms_norm_layer: RMSNorm, x: torch.Tensor, | ||
residual: Optional[torch.Tensor], | ||
quant_dtype: torch.dtype): | ||
# Norm | ||
torch_out = None | ||
if residual is None: | ||
torch_out = rms_norm_layer.forward_cuda(x, residual) | ||
else: | ||
torch_out, _ = rms_norm_layer.forward_cuda(x, residual) | ||
|
||
# Quant | ||
torch_out, _ = ops.scaled_fp8_quant(torch_out) | ||
|
||
|
||
def fused_impl( | ||
rms_norm_layer: RMSNorm, # this stores the weights | ||
x: torch.Tensor, | ||
residual: Optional[torch.Tensor], | ||
quant_dtype: torch.dtype): | ||
out, _ = ops.rms_norm_dynamic_per_token_quant(x, | ||
rms_norm_layer.weight, | ||
1e-6, | ||
quant_dtype, | ||
residual=residual) | ||
|
||
|
||
# Bench functions | ||
def bench_fn(rms_norm_layer: RMSNorm, x: torch.Tensor, residual: torch.Tensor, | ||
quant_dtype: torch.dtype, label: str, sub_label: str, | ||
fn: Callable, description: str) -> TMeasurement: | ||
|
||
min_run_time = 1 | ||
|
||
globals = { | ||
"rms_norm_layer": rms_norm_layer, | ||
"x": x, | ||
"residual": residual, | ||
"quant_dtype": quant_dtype, | ||
"fn": fn, | ||
} | ||
return TBenchmark.Timer( | ||
stmt="fn(rms_norm_layer, x, residual, quant_dtype)", | ||
globals=globals, | ||
label=label, | ||
sub_label=sub_label, | ||
description=description, | ||
).blocked_autorange(min_run_time=min_run_time) | ||
|
||
def bench(params: bench_params_t, label: str, sub_label: str) \ | ||
-> Iterable[TMeasurement]: | ||
|
||
# Make inputs | ||
layer = RMSNorm(params.hidden_size, 1e-6).to(dtype=params.dtype) | ||
# Make weights | ||
layer.weight.data.normal_(mean=1.0, std=0.1) | ||
# Make inputs | ||
scale = 1 / params.hidden_size | ||
x = torch.randn(params.num_tokens, | ||
params.hidden_size, | ||
dtype=params.dtype, | ||
device='cuda') * scale | ||
residual = (torch.randn_like(x) * scale).to(device='cuda') \ | ||
if params.add_residual else None | ||
|
||
timers = [] | ||
|
||
# unfused int8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.int8, label, sub_label, | ||
unfused_int8_impl, "unfused_int8_impl")) | ||
|
||
# unfused fp8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label, | ||
unfused_fp8_impl, "unfused_fp8_impl")) | ||
|
||
# fused int8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.int8, label, sub_label, fused_impl, | ||
"fused_int8_impl")) | ||
|
||
# fused fp8 impl. | ||
timers.append( | ||
bench_fn(layer, x, residual, torch.float8_e4m3fn, label, sub_label, | ||
fused_impl, "fused_fp8_impl")) | ||
|
||
print_timers(timers) | ||
|
||
return timers | ||
|
||
|
||
# launch bench | ||
# runner | ||
def print_timers(timers: Iterable[TMeasurement]): | ||
compare = TBenchmark.Compare(timers) | ||
compare.print() | ||
|
||
|
||
def main(): | ||
torch.set_default_device('cuda') | ||
bench_params = get_bench_params() | ||
|
||
timers = [] | ||
for bp in tqdm(bench_params): | ||
timers.extend( | ||
bench(bp, "rms-norm-dynamic-per-token-quant", bp.description())) | ||
print_timers(timers) | ||
|
||
# pickle all the results | ||
timestamp = int(time.time()) | ||
with open(f"rms_norm_dpt_quant-{timestamp}.pkl", "wb") as f: | ||
pkl.dump(timers, f) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.