Skip to content

Commit

Permalink
Add support for a rope extension method (#6553)
Browse files Browse the repository at this point in the history
  • Loading branch information
simon-mo authored Jul 19, 2024
1 parent 1689219 commit c5df56f
Show file tree
Hide file tree
Showing 2 changed files with 48 additions and 4 deletions.
14 changes: 12 additions & 2 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,15 @@ def __init__(
self.hf_text_config = get_hf_text_config(self.hf_config)
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)

if (getattr(self.hf_config, "max_position_embeddings", 0) == 131072
and getattr(self.hf_config, "rope_scaling", None) is None):
# Note(simon): this is a special case for a model that doesn't
# supply rope_scaling. We should remove this once the model is
# updated.
self.hf_config.update({"rope_scaling": {
"type": "extended",
}})

if (not self.disable_sliding_window
and self.hf_text_config.model_type == "gemma2"
and self.hf_text_config.sliding_window is not None):
Expand Down Expand Up @@ -1442,8 +1451,9 @@ def _get_and_verify_max_len(
rope_scaling = getattr(hf_config, "rope_scaling", None)
# The correct one should be "longrope", kept "su" here
# to be backward compatible
if rope_scaling is not None and rope_scaling["type"] != "su" \
and rope_scaling["type"] != "longrope":
if rope_scaling is not None and rope_scaling["type"] not in {
"su", "longrope", "extended"
}:
if disable_sliding_window:
# TODO(robertgshaw): Find a model that supports rope_scaling
# with sliding window to see if this case should be allowed.
Expand Down
38 changes: 36 additions & 2 deletions vllm/model_executor/layers/rotary_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -733,6 +733,36 @@ def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
return inv_freq


class ExtendedRotaryEmbedding(RotaryEmbedding):

def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
inv_freqs = super()._compute_inv_freq(base)
return self.apply_scaling(inv_freqs)

def apply_scaling(self, freqs: torch.Tensor):
scale_factor = 8
low_freq_factor = 1
high_freq_factor = 4
old_context_len = 8192

low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
new_freqs = []
for freq in freqs:
wavelen = 2 * math.pi / freq
if wavelen < high_freq_wavelen:
new_freqs.append(freq)
elif wavelen > low_freq_wavelen:
new_freqs.append(freq / scale_factor)
else:
assert low_freq_wavelen != high_freq_wavelen
smooth = (old_context_len / wavelen - low_freq_factor) / (
high_freq_factor - low_freq_factor)
new_freqs.append((1 - smooth) * freq / scale_factor +
smooth * freq)
return torch.tensor(new_freqs, dtype=freqs.dtype, device=freqs.device)


_ROPE_DICT: Dict[Tuple, RotaryEmbedding] = {}


Expand Down Expand Up @@ -767,9 +797,13 @@ def get_rope(
scaling_type = rope_scaling["type"]
# The correct one should be "longrope" but keep "su" here
# for backward compatible
if scaling_type != "su" and scaling_type != "longrope":
if scaling_type not in {"su", "longrope", "extended"}:
scaling_factor = rope_scaling["factor"]
if scaling_type == "linear":
if scaling_type == "extended":
rotary_emb = ExtendedRotaryEmbedding(head_size, rotary_dim,
max_position, base,
is_neox_style, dtype)
elif scaling_type == "linear":
rotary_emb = LinearScalingRotaryEmbedding(head_size, rotary_dim,
max_position, base,
is_neox_style,
Expand Down

0 comments on commit c5df56f

Please sign in to comment.