-
-
Notifications
You must be signed in to change notification settings - Fork 4.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: DarkLight1337 <[email protected]>
- Loading branch information
1 parent
b5e5b8a
commit cf24a1b
Showing
3 changed files
with
196 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,172 @@ | ||
r"""Benchmark offline inference throughput with MMMU-PRO Vision | ||
e.g, | ||
python3 benchmarks/mmmu_bench.py \ | ||
--model mistralai/Pixtral-12B-2409 \ | ||
--tokenizer-mode mistral \ | ||
--num-prompts 1000 \ | ||
--image-hit-rate 0.5 | ||
python3 benchmarks/mmmu_bench.py \ | ||
--model allenai/Molmo-72B-0924 \ | ||
--tensor-parallel-size 4 \ | ||
--trust-remote-code \ | ||
--num-prompts 1000 | ||
""" | ||
import argparse | ||
import asyncio | ||
import base64 | ||
import dataclasses | ||
import io | ||
import math | ||
import random | ||
import time | ||
from itertools import chain | ||
|
||
from datasets import load_dataset | ||
from PIL import Image | ||
|
||
from vllm import LLM, SamplingParams | ||
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs | ||
from vllm.entrypoints.chat_utils import load_chat_template | ||
from vllm.utils import FlexibleArgumentParser | ||
|
||
|
||
def sample_mmmu_pro_vision_requests( | ||
dataset, | ||
num_requests: int, | ||
image_hit_rate: float, | ||
): | ||
sampled_requests = [] | ||
num_unique_images = max(int(num_requests * (1 - image_hit_rate)), 1) | ||
print( | ||
f"Total {num_requests} requests with {num_unique_images} unique images" | ||
) | ||
dataset = dataset.take(num_unique_images) | ||
|
||
# The dataset with streaming=True fetches (downloads) 64 rows at a time. | ||
print("Fetching data. This may take a while...") | ||
for data in dataset: | ||
if len(sampled_requests) == num_requests: | ||
break | ||
|
||
# MMMU-Pro vision direct prompt | ||
# Ref: https://github.com/MMMU-Benchmark/MMMU/blob/6ce42f4d8f70c1841c67867152648974415b5cac/mmmu-pro/prompts.yaml#L5 | ||
prompt = ( | ||
"Answer with the option letter from the given choices directly. " | ||
"The last line of your response should be of the following " | ||
"format: 'Answer: $LETTER' (without quotes) where LETTER is one of " | ||
"options.") | ||
|
||
image: Image.Image = data["image"] | ||
image = image.convert("RGB") | ||
image_data = io.BytesIO() | ||
image.save(image_data, format='JPEG') | ||
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8") | ||
mm_content = { | ||
"type": "image_url", | ||
"image_url": { | ||
"url": f"data:image/jpeg;base64,{image_base64}" | ||
}, | ||
} | ||
|
||
messages = [{ | ||
"role": | ||
"user", | ||
"content": [ | ||
{ | ||
"type": "text", | ||
"text": prompt | ||
}, | ||
mm_content, | ||
], | ||
}] | ||
sampled_requests.append(messages) | ||
|
||
n = math.ceil(num_requests / num_unique_images) | ||
sampled_requests = list( | ||
chain.from_iterable([x] * n for x in sampled_requests))[:num_requests] | ||
|
||
return sampled_requests | ||
|
||
|
||
def sample_hf_requests( | ||
num_requests: int, | ||
random_seed: int, | ||
image_hit_rate: float, | ||
): | ||
dataset = load_dataset('MMMU/MMMU_Pro', | ||
name='vision', | ||
split="test", | ||
streaming=True) | ||
dataset = dataset.shuffle(seed=random_seed) | ||
return sample_mmmu_pro_vision_requests(dataset, num_requests, | ||
image_hit_rate) | ||
|
||
|
||
def initialize_llm(engine_args): | ||
print("Initializing LLM...") | ||
return LLM(**dataclasses.asdict(engine_args)) | ||
|
||
|
||
async def main(args: argparse.Namespace): | ||
print(args) | ||
random.seed(args.seed) | ||
engine_args = EngineArgs.from_cli_args(args) | ||
|
||
sampling_params = SamplingParams(max_tokens=args.output_len, temperature=0) | ||
chat_template = load_chat_template(args.chat_template) | ||
|
||
# Concurrently initialize the LLM and sample data. Note that since | ||
# both initialize_llm and sample_hf_requests are blocking, we need to | ||
# use asyncio.to_thread to create async coroutines. | ||
st = time.perf_counter() | ||
sampling_task = asyncio.create_task( | ||
asyncio.to_thread(sample_hf_requests, args.num_prompts, args.seed, | ||
args.image_hit_rate)) | ||
llm_task = asyncio.create_task( | ||
asyncio.to_thread(initialize_llm, engine_args)) | ||
|
||
sampled, llm = await asyncio.gather(sampling_task, llm_task) | ||
print(f"Data sampling + LLM init time: {time.perf_counter() - st:.2f}s") | ||
|
||
st = time.perf_counter() | ||
outputs = llm.chat(sampled, | ||
sampling_params=sampling_params, | ||
chat_template=chat_template) | ||
duration = time.perf_counter() - st | ||
|
||
total_generated_tokens = sum( | ||
len(output.outputs[0].token_ids) for output in outputs) | ||
|
||
print(f"Request throughput: {args.num_prompts / duration:.2f} req/s") | ||
print(f"Total generated tokens: {total_generated_tokens}") | ||
print( | ||
f"Token generation rate: {total_generated_tokens / duration:.2f} tok/s" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = FlexibleArgumentParser(description="Benchmark the throughput.") | ||
parser.add_argument("--output-len", | ||
type=int, | ||
default=128, | ||
help="Output length for each request. Overrides the " | ||
"output length from the dataset.") | ||
parser.add_argument("--num-prompts", | ||
type=int, | ||
default=1000, | ||
help="Number of prompts to process.") | ||
parser.add_argument("--image-hit-rate", | ||
type=float, | ||
default=0.0, | ||
help="Image hit rate between 0 and 1.") | ||
parser.add_argument("--chat-template", | ||
type=str, | ||
default=None, | ||
help="Set the chat template to use.") | ||
parser = AsyncEngineArgs.add_cli_args(parser) | ||
args = parser.parse_args() | ||
if args.tokenizer is None: | ||
args.tokenizer = args.model | ||
|
||
asyncio.run(main(args)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters