Skip to content

Commit

Permalink
[Model] Enable optional prefix when loading embedding models (#10639)
Browse files Browse the repository at this point in the history
Signed-off-by: DarkLight1337 <[email protected]>
  • Loading branch information
DarkLight1337 authored Nov 25, 2024
1 parent b1d9205 commit cf73f0c
Show file tree
Hide file tree
Showing 5 changed files with 20 additions and 13 deletions.
9 changes: 5 additions & 4 deletions vllm/model_executor/models/bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,18 +14,17 @@
RowParallelLinear)
from vllm.model_executor.layers.pooler import (CrossEncodingPooler, Pooler,
PoolingType)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import SupportsCrossEncoding
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors, PoolerOutput
from vllm.transformers_utils.config import (
get_cross_encoder_activation_function)

from .utils import maybe_prefix
from .interfaces import SupportsCrossEncoding
from .utils import WeightsMapper, maybe_prefix


class BertEmbedding(nn.Module):
Expand Down Expand Up @@ -442,6 +441,8 @@ def pooler(
return self._pooler(hidden_states, pooling_metadata)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
weights = hf_to_vllm_mapper.apply(weights)
self.model.load_weights(weights)

def _build_model(self,
Expand Down
4 changes: 3 additions & 1 deletion vllm/model_executor/models/gemma2.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@
from vllm.sequence import IntermediateTensors, PoolerOutput

from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, extract_layer_index,
from .utils import (AutoWeightsLoader, WeightsMapper, extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
Expand Down Expand Up @@ -511,4 +511,6 @@ def pooler(
return self._pooler(hidden_states, pooling_metadata)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
weights = hf_to_vllm_mapper.apply(weights)
self.model.load_weights(weights)
5 changes: 4 additions & 1 deletion vllm/model_executor/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@
from vllm.sequence import IntermediateTensors, PoolerOutput

from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter,
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)

Expand Down Expand Up @@ -689,6 +690,8 @@ def pooler(
return self._pooler(hidden_states, pooling_metadata)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
weights = hf_to_vllm_mapper.apply(weights)
self.model.load_weights(weights)

def load_kv_cache_scales(self, quantization_param_path: str) -> None:
Expand Down
12 changes: 6 additions & 6 deletions vllm/model_executor/models/qwen2.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,8 @@
from vllm.sequence import IntermediateTensors, PoolerOutput

from .interfaces import SupportsLoRA, SupportsPP
from .utils import (AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter,
from .utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)

Expand Down Expand Up @@ -585,8 +586,7 @@ def pooler(
) -> Optional[PoolerOutput]:
return self._pooler(hidden_states, pooling_metadata)

def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
loader = AutoWeightsLoader(self,
ignore_unexpected_prefixes=["lm_head."])
return loader.load_weights(weights)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
weights = hf_to_vllm_mapper.apply(weights)
self.model.load_weights(weights)
3 changes: 2 additions & 1 deletion vllm/model_executor/models/roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,13 +11,14 @@
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.bert import BertEmbeddingModel, BertModel
from vllm.model_executor.models.interfaces import SupportsCrossEncoding
from vllm.model_executor.models.utils import maybe_prefix
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors, PoolerOutput
from vllm.transformers_utils.config import (
get_cross_encoder_activation_function)

from .interfaces import SupportsCrossEncoding


class RobertaEmbedding(nn.Module):

Expand Down

0 comments on commit cf73f0c

Please sign in to comment.