Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[1/N] Initial prototype for multi-modal processor #10044

Merged
merged 22 commits into from
Nov 13, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/models/enabling_multimodal_inputs.rst
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ A default mapper is available for each modality in the core vLLM library. This i
3. Register maximum number of multi-modal tokens
------------------------------------------------

For each modality type that the model accepts as input, calculate the maximum possible number of tokens per data instance
For each modality type that the model accepts as input, calculate the maximum possible number of tokens per data item
and register it via :meth:`INPUT_REGISTRY.register_dummy_data <vllm.inputs.registry.InputRegistry.register_max_multimodal_tokens>`.

.. code-block:: diff
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from PIL.Image import Image

from vllm.inputs import InputContext, token_inputs
from vllm.multimodal.base import MultiModalKwargs
from vllm.multimodal import MultiModalKwargs
from vllm.multimodal.utils import cached_get_tokenizer

from .....conftest import IMAGE_ASSETS
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import torch

from vllm.multimodal.base import MultiModalKwargs, NestedTensors
from vllm.multimodal.inputs import MultiModalKwargs, NestedTensors


def assert_nested_tensors_equal(expected: NestedTensors,
Expand Down
2 changes: 1 addition & 1 deletion vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ class ModelConfig:
matches the model name exposed via the APIs. If multiple model
names provided, the first name will be used. If not specified,
the model name will be the same as `model`.
limit_mm_per_prompt: Maximum number of data instances per modality
limit_mm_per_prompt: Maximum number of data items per modality
per prompt. Only applicable for multimodal models.
override_neuron_config: Initialize non default neuron config or
override default neuron config that are specific to Neuron devices,
Expand Down
4 changes: 4 additions & 0 deletions vllm/engine/async_llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from vllm.executor.gpu_executor import GPUExecutorAsync
from vllm.executor.ray_utils import initialize_ray_cluster
from vllm.inputs import PromptType
from vllm.inputs.preprocess import InputPreprocessor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor.guided_decoding import (
Expand Down Expand Up @@ -729,6 +730,9 @@ def _error_callback(self, exc: Exception) -> None:
self.set_errored(exc)
self._request_tracker.propagate_exception(exc)

async def get_input_preprocessor(self) -> InputPreprocessor:
return self.engine.input_preprocessor

async def get_tokenizer(
self,
lora_request: Optional[LoRARequest] = None,
Expand Down
5 changes: 4 additions & 1 deletion vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
from vllm.model_executor.guided_decoding import (
get_local_guided_decoding_logits_processor)
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalRegistry
from vllm.outputs import (EmbeddingRequestOutput, RequestOutput,
RequestOutputFactory)
from vllm.pooling_params import PoolingParams
Expand Down Expand Up @@ -226,6 +227,7 @@ def __init__(
usage_context: UsageContext = UsageContext.ENGINE_CONTEXT,
stat_loggers: Optional[Dict[str, StatLoggerBase]] = None,
input_registry: InputRegistry = INPUT_REGISTRY,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
use_cached_outputs: bool = False,
) -> None:

Expand Down Expand Up @@ -338,7 +340,8 @@ def get_tokenizer_for_seq(sequence: Sequence) -> AnyTokenizer:
model_config)

self.input_preprocessor = InputPreprocessor(model_config,
self.tokenizer)
self.tokenizer,
mm_registry)

self.input_registry = input_registry
self.input_processor = input_registry.create_input_processor(
Expand Down
6 changes: 6 additions & 0 deletions vllm/engine/multiprocessing/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
# yapf: enable
from vllm.envs import VLLM_RPC_TIMEOUT
from vllm.inputs import PromptType
from vllm.inputs.preprocess import InputPreprocessor
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.sampler import SamplerOutput
Expand Down Expand Up @@ -94,6 +95,8 @@ def __init__(self, ipc_path: str, engine_config: VllmConfig,
parallel_config=engine_config.parallel_config,
enable_lora=bool(engine_config.lora_config),
)
self.input_preprocessor = InputPreprocessor(self.model_config,
self.tokenizer)

# Send RPCGenerateRequest to the MQLLMEngine.
self.input_socket: Socket = self.context.socket(zmq.constants.PUSH)
Expand Down Expand Up @@ -345,6 +348,9 @@ async def _check_success(error_message: str, socket: Socket):
or response != VLLM_RPC_SUCCESS_STR):
raise ValueError(error_message)

async def get_input_preprocessor(self) -> InputPreprocessor:
return self.input_preprocessor

async def get_tokenizer(self, lora_request: Optional[LoRARequest] = None):
return await self.tokenizer.get_lora_tokenizer_async(lora_request)

Expand Down
16 changes: 11 additions & 5 deletions vllm/engine/protocol.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ def generate(
async def beam_search(
self,
prompt: PromptType,
model_config: ModelConfig,
request_id: str,
params: BeamSearchParams,
) -> AsyncGenerator[RequestOutput, None]:
Expand All @@ -74,13 +73,14 @@ async def beam_search(
length_penalty = params.length_penalty
include_stop_str_in_output = params.include_stop_str_in_output

tokenizer = await self.get_tokenizer()
input_preprocessor = InputPreprocessor(model_config, tokenizer)
preprocessor = await self.get_input_preprocessor()
tokenizer_group = preprocessor.get_tokenizer_group()
tokenizer = await tokenizer_group.get_lora_tokenizer_async()

if is_explicit_encoder_decoder_prompt(prompt):
raise NotImplementedError
else:
processed_inputs = input_preprocessor._prompt_to_llm_inputs(
processed_inputs = preprocessor._prompt_to_llm_inputs(
prompt,
request_id=request_id,
)
Expand Down Expand Up @@ -220,6 +220,7 @@ async def abort(self, request_id: str) -> None:
Args:
request_id: The unique id of the request.
"""
...

@abstractmethod
async def get_model_config(self) -> ModelConfig:
Expand All @@ -228,8 +229,13 @@ async def get_model_config(self) -> ModelConfig:

@abstractmethod
async def get_decoding_config(self) -> DecodingConfig:
...
"""Get the decoding configuration of the vLLM engine."""
...

@abstractmethod
async def get_input_preprocessor(self) -> InputPreprocessor:
"""Get the input processor of the vLLM engine."""
...

@abstractmethod
async def get_tokenizer(
Expand Down
1 change: 0 additions & 1 deletion vllm/entrypoints/openai/serving_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -187,7 +187,6 @@ async def create_chat_completion(
if isinstance(sampling_params, BeamSearchParams):
generator = self.engine_client.beam_search(
prompt=engine_prompt,
model_config=self.model_config,
request_id=request_id,
params=sampling_params,
)
Expand Down
1 change: 0 additions & 1 deletion vllm/entrypoints/openai/serving_completion.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,6 @@ async def create_completion(
if isinstance(sampling_params, BeamSearchParams):
generator = self.engine_client.beam_search(
prompt=engine_prompt,
model_config=self.model_config,
request_id=request_id,
params=sampling_params,
)
Expand Down
4 changes: 3 additions & 1 deletion vllm/inputs/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,8 @@
SingletonInputs, SingletonPrompt, TextPrompt, TokenInputs,
TokensPrompt, build_explicit_enc_dec_prompt,
to_enc_dec_tuple_list, token_inputs, zip_enc_dec_prompts)
from .registry import DummyData, InputContext, InputRegistry
from .registry import (DummyData, InputContext, InputProcessingContext,
InputRegistry)

INPUT_REGISTRY = InputRegistry()
"""
Expand Down Expand Up @@ -32,6 +33,7 @@
"INPUT_REGISTRY",
"DummyData",
"InputContext",
"InputProcessingContext",
"InputRegistry",
]

Expand Down
13 changes: 7 additions & 6 deletions vllm/inputs/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

if TYPE_CHECKING:
from vllm.multimodal import MultiModalDataDict, MultiModalPlaceholderDict
from vllm.multimodal.inputs import MultiModalInputsV2


class TextPrompt(TypedDict):
Expand Down Expand Up @@ -36,13 +37,13 @@ class TokensPrompt(TypedDict):

multi_modal_data: NotRequired["MultiModalDataDict"]
"""
Optional multi-modal data to pass to the model,
DEPRECATED: Optional multi-modal data to pass to the model,
if the model supports it.
"""

mm_processor_kwargs: NotRequired[Dict[str, Any]]
"""
Optional multi-modal processor kwargs to be forwarded to the
DEPRECATED: Optional multi-modal processor kwargs to be forwarded to the
multimodal input mapper & processor. Note that if multiple modalities
have registered mappers etc for the model being considered, we attempt
to pass the mm_processor_kwargs to each of them.
Expand Down Expand Up @@ -176,7 +177,7 @@ def token_inputs(
return inputs


DecoderOnlyInputs = TokenInputs
DecoderOnlyInputs = Union[TokenInputs, "MultiModalInputsV2"]
"""
The inputs in :class:`~vllm.LLMEngine` before they are
passed to the model executor.
Expand All @@ -191,14 +192,14 @@ class EncoderDecoderInputs(TypedDict):
This specifies the required data for encoder-decoder models.
"""
encoder: TokenInputs
encoder: Union[TokenInputs, "MultiModalInputsV2"]
"""The inputs for the encoder portion."""

decoder: TokenInputs
decoder: Union[TokenInputs, "MultiModalInputsV2"]
"""The inputs for the decoder portion."""


SingletonInputs = TokenInputs
SingletonInputs = Union[TokenInputs, "MultiModalInputsV2"]
"""
A processed :class:`SingletonPrompt` which can be passed to
:class:`vllm.sequence.Sequence`.
Expand Down
Loading