Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Add has_weight to RMSNorm and re-enable weights loading tracker for Mamba #10739

Merged
merged 3 commits into from
Dec 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions vllm/model_executor/layers/layernorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,19 @@ def __init__(
hidden_size: int,
eps: float = 1e-6,
var_hidden_size: Optional[int] = None,
has_weight: bool = True,
) -> None:
super().__init__()

self.hidden_size = hidden_size
self.variance_epsilon = eps
self.variance_size_override = (None if var_hidden_size == hidden_size
else var_hidden_size)
self.weight = nn.Parameter(torch.ones(hidden_size))
self.has_weight = has_weight

self.weight = torch.ones(hidden_size)
if self.has_weight:
self.weight = nn.Parameter(self.weight)

def forward_native(
self,
Expand Down Expand Up @@ -59,7 +64,9 @@ def forward_native(
variance = x_var.pow(2).mean(dim=-1, keepdim=True)

x = x * torch.rsqrt(variance + self.variance_epsilon)
x = x.to(orig_dtype) * self.weight
x = x.to(orig_dtype)
if self.has_weight:
x = x * self.weight
if residual is None:
return x
else:
Expand Down
26 changes: 18 additions & 8 deletions vllm/model_executor/layers/mamba/mamba_mixer.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ def __init__(self,
use_conv_bias: bool,
use_bias: bool,
use_rms_norm: bool,
rms_norm_has_weight: bool = True,
rms_norm_eps: float = 1e-5,
activation="silu"):
super().__init__()
Expand Down Expand Up @@ -105,14 +106,23 @@ def A_weight_loader(param: Parameter, loaded_weight: torch.Tensor):
input_is_parallel=True,
)

self.dt_layernorm = RMSNorm(time_step_rank,
eps=rms_norm_eps) if use_rms_norm else None

self.b_layernorm = RMSNorm(ssm_state_size,
eps=rms_norm_eps) if use_rms_norm else None

self.c_layernorm = RMSNorm(ssm_state_size,
eps=rms_norm_eps) if use_rms_norm else None
self.dt_layernorm = RMSNorm(
time_step_rank,
eps=rms_norm_eps,
has_weight=rms_norm_has_weight,
) if use_rms_norm else None

self.b_layernorm = RMSNorm(
ssm_state_size,
eps=rms_norm_eps,
has_weight=rms_norm_has_weight,
) if use_rms_norm else None

self.c_layernorm = RMSNorm(
ssm_state_size,
eps=rms_norm_eps,
has_weight=rms_norm_has_weight,
) if use_rms_norm else None

def forward_native(self, hidden_states: torch.Tensor,
attn_metadata: AttentionMetadata,
Expand Down
9 changes: 7 additions & 2 deletions vllm/model_executor/models/mamba.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""PyTorch MAMBA model."""
from typing import Iterable, List, Optional, Tuple
from typing import Iterable, List, Optional, Set, Tuple

import torch
from torch import nn
Expand Down Expand Up @@ -47,6 +47,7 @@ def __init__(self,
use_conv_bias=config.use_conv_bias,
use_bias=config.use_bias,
use_rms_norm=self.is_falcon_mamba,
rms_norm_has_weight=not self.is_falcon_mamba,
rms_norm_eps=mixer_rms_eps,
activation=config.hidden_act)

Expand Down Expand Up @@ -241,8 +242,10 @@ def sample(
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "A_log" in name:
name = name.replace("A_log", "A")
Expand All @@ -254,3 +257,5 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
Loading