Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Add JambaForSequenceClassification model #10860

Merged
merged 10 commits into from
Dec 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -476,6 +476,11 @@ Classification (``--task classify``)
- Example HF Models
- :ref:`LoRA <lora>`
- :ref:`PP <distributed_serving>`
* - :code:`JambaForSequenceClassification`
- Jamba
- :code:`ai21labs/Jamba-tiny-reward-dev`, etc.
- ✅︎
- ✅︎
* - :code:`Qwen2ForSequenceClassification`
- Qwen2-based
- :code:`jason9693/Qwen2.5-1.5B-apeach`, etc.
Expand Down
1 change: 1 addition & 0 deletions tests/models/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,7 @@ class _HfExamplesInfo:
"BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5"),
"Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2"),
"GritLM": _HfExamplesInfo("parasail-ai/GritLM-7B-vllm"),
"JambaForSequenceClassification": _HfExamplesInfo("ai21labs/Jamba-tiny-reward-dev"), # noqa: E501
"LlamaModel": _HfExamplesInfo("llama", is_available_online=False),
"MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"),
"Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"),
Expand Down
36 changes: 35 additions & 1 deletion vllm/model_executor/models/jamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,15 +17,17 @@
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer import MambaMixer
from vllm.model_executor.layers.pooler import Pooler, PoolingType
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.mamba_cache import (MambaCacheManager,
MambaCacheParams)
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.sequence import IntermediateTensors, PoolerOutput
from vllm.utils import LayerBlockType

from .interfaces import HasInnerState, IsHybrid, SupportsLoRA, SupportsPP
Expand Down Expand Up @@ -593,3 +595,35 @@ def _is_moe_layer(name: str):
"experts",
"router",
]])


class JambaForSequenceClassification(JambaForCausalLM):

def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
config = vllm_config.model_config.hf_config
num_labels: int = config.num_labels
score_bias: bool = getattr(config, 'score_bias', False)
self.score = nn.Linear(config.hidden_size, num_labels, bias=score_bias)

pooler_config = vllm_config.model_config.pooler_config
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=PoolingType.LAST,
normalize=False,
softmax=False)

def pooler(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Optional[PoolerOutput]:
hidden_states = hidden_states.float()
logits = self.score(hidden_states)
return self._pooler(logits, pooling_metadata)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
# TODO: The reward weights themselves have float32 accuracy data, we
# would like to load them in fp32 to get that extra precision.
super().load_weights(weights)
self.score = self.score.float()
1 change: 1 addition & 0 deletions vllm/model_executor/models/registry.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@
"Gemma2Model": ("gemma2", "Gemma2ForCausalLM"),
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
"GritLM": ("gritlm", "GritLM"),
"JambaForSequenceClassification": ("jamba", "JambaForSequenceClassification"), # noqa: E501
"LlamaModel": ("llama", "LlamaForCausalLM"),
**{
# Multiple models share the same architecture, so we include them all
Expand Down
7 changes: 6 additions & 1 deletion vllm/worker/pooling_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,10 @@ def execute_model(
]

multi_modal_kwargs = model_input.multi_modal_kwargs or {}
seqlen_agnostic_kwargs = {
"finished_requests_ids": model_input.finished_requests_ids,
"request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
} if self.has_inner_state else {}
if (self.observability_config is not None
and self.observability_config.collect_model_forward_time):
model_forward_start = torch.cuda.Event(enable_timing=True)
Expand All @@ -110,7 +114,8 @@ def execute_model(
intermediate_tensors=intermediate_tensors,
**MultiModalKwargs.as_kwargs(multi_modal_kwargs,
device=self.device),
**cross_enc_kwargs)
**cross_enc_kwargs,
**seqlen_agnostic_kwargs)
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved

if (self.observability_config is not None
and self.observability_config.collect_model_forward_time):
Expand Down
Loading