Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DO NOT MERGE] VLM offline benchmark with MMMU-Pro vision #11196

Draft
wants to merge 11 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
172 changes: 172 additions & 0 deletions benchmarks/mmmu_bench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
r"""Benchmark offline inference throughput with MMMU-PRO Vision
e.g,
python3 benchmarks/mmmu_bench.py \
--model mistralai/Pixtral-12B-2409 \
--tokenizer-mode mistral \
--num-prompts 1000 \
--image-hit-rate 0.5

python3 benchmarks/mmmu_bench.py \
--model allenai/Molmo-72B-0924 \
--tensor-parallel-size 4 \
--trust-remote-code \
--num-prompts 1000
"""
import argparse
import asyncio
import base64
import dataclasses
import io
import math
import random
import time
from itertools import chain

from datasets import load_dataset
from PIL import Image

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.entrypoints.chat_utils import load_chat_template
from vllm.utils import FlexibleArgumentParser


def sample_mmmu_pro_vision_requests(
dataset,
num_requests: int,
image_hit_rate: float,
):
sampled_requests = []
num_unique_images = max(int(num_requests * (1 - image_hit_rate)), 1)
print(
f"Total {num_requests} requests with {num_unique_images} unique images"
)
dataset = dataset.take(num_unique_images)

# The dataset with streaming=True fetches (downloads) 64 rows at a time.
print("Fetching data. This may take a while...")
for data in dataset:
if len(sampled_requests) == num_requests:
break

# MMMU-Pro vision direct prompt
# Ref: https://github.com/MMMU-Benchmark/MMMU/blob/6ce42f4d8f70c1841c67867152648974415b5cac/mmmu-pro/prompts.yaml#L5
prompt = (
"Answer with the option letter from the given choices directly. "
"The last line of your response should be of the following "
"format: 'Answer: $LETTER' (without quotes) where LETTER is one of "
"options.")

image: Image.Image = data["image"]
image = image.convert("RGB")
image_data = io.BytesIO()
image.save(image_data, format='JPEG')
image_base64 = base64.b64encode(image_data.getvalue()).decode("utf-8")
mm_content = {
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
},
}

messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": prompt
},
mm_content,
],
}]
sampled_requests.append(messages)

n = math.ceil(num_requests / num_unique_images)
sampled_requests = list(
chain.from_iterable([x] * n for x in sampled_requests))[:num_requests]

return sampled_requests
ywang96 marked this conversation as resolved.
Show resolved Hide resolved


def sample_hf_requests(
num_requests: int,
random_seed: int,
image_hit_rate: float,
):
dataset = load_dataset('MMMU/MMMU_Pro',
name='vision',
split="test",
streaming=True)
dataset = dataset.shuffle(seed=random_seed)
return sample_mmmu_pro_vision_requests(dataset, num_requests,
image_hit_rate)


def initialize_llm(engine_args):
print("Initializing LLM...")
return LLM(**dataclasses.asdict(engine_args))


async def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
engine_args = EngineArgs.from_cli_args(args)

sampling_params = SamplingParams(max_tokens=args.output_len, temperature=0)
chat_template = load_chat_template(args.chat_template)

# Concurrently initialize the LLM and sample data. Note that since
# both initialize_llm and sample_hf_requests are blocking, we need to
# use asyncio.to_thread to create async coroutines.
st = time.perf_counter()
sampling_task = asyncio.create_task(
asyncio.to_thread(sample_hf_requests, args.num_prompts, args.seed,
args.image_hit_rate))
llm_task = asyncio.create_task(
asyncio.to_thread(initialize_llm, engine_args))

sampled, llm = await asyncio.gather(sampling_task, llm_task)
print(f"Data sampling + LLM init time: {time.perf_counter() - st:.2f}s")

st = time.perf_counter()
outputs = llm.chat(sampled,
sampling_params=sampling_params,
chat_template=chat_template)
duration = time.perf_counter() - st

total_generated_tokens = sum(
len(output.outputs[0].token_ids) for output in outputs)

print(f"Request throughput: {args.num_prompts / duration:.2f} req/s")
print(f"Total generated tokens: {total_generated_tokens}")
print(
f"Token generation rate: {total_generated_tokens / duration:.2f} tok/s"
)


if __name__ == "__main__":
parser = FlexibleArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--output-len",
type=int,
default=128,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--image-hit-rate",
type=float,
default=0.0,
help="Image hit rate between 0 and 1.")
parser.add_argument("--chat-template",
type=str,
default=None,
help="Set the chat template to use.")
parser = AsyncEngineArgs.add_cli_args(parser)
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model

asyncio.run(main(args))
Loading