-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add language model utility class for text generation
- Loading branch information
Showing
3 changed files
with
111 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,3 +3,4 @@ | |
from .text import * | ||
from .vectorize import * | ||
from .panel import * | ||
from .lm import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
try: | ||
import numpy as np | ||
import torch | ||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
|
||
torch.random.manual_seed(0) | ||
except: | ||
print("Warning: transformers not installed. LLM will not work.") | ||
pass | ||
|
||
|
||
class LMUtil: | ||
def __init__(self, model_name="gpt2", | ||
tokenizer=None, | ||
model=None, | ||
device=None, | ||
torch_dtype=torch.float16, | ||
device_map="auto"): | ||
if not tokenizer: | ||
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
else: | ||
self.tokenizer = tokenizer | ||
if not device: | ||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
else: | ||
self.device = device | ||
if not model: | ||
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype, | ||
device_map=device_map) | ||
else: | ||
self.model = model | ||
self.model_name = model_name | ||
if self.tokenizer.pad_token is None: | ||
self.tokenizer.add_special_tokens({"pad_token": "<pad>"}) | ||
self.tokenizer.pad_token_id = 0 | ||
self.tokenizer.padding_side = 'right' | ||
|
||
@staticmethod | ||
def softmax(x): | ||
e_x = np.exp(x - np.max(x)) | ||
return e_x / e_x.sum(axis=0) | ||
|
||
def input_encode(self, input_sent): | ||
tensor_input = self.tokenizer.encode(input_sent, return_tensors='pt').to(self.device) | ||
return tensor_input | ||
|
||
def __call__(self, input_sent, | ||
do_sample=False, | ||
top_k=50, | ||
top_p=0.95, | ||
typical_p=1.0, | ||
no_repeat_ngram_size=0, | ||
temperature=1.0, | ||
repetition_penalty=1.0, | ||
guidance_scale=1, | ||
max_new_tokens=512): | ||
|
||
tokenized = self.tokenizer(input_sent, padding=True, return_tensors='pt') | ||
input_ids = tokenized.input_ids.to(self.device) | ||
|
||
output_ids = self.model.generate( | ||
input_ids, | ||
do_sample=do_sample, | ||
top_k=top_k, | ||
top_p=top_p, | ||
typical_p=typical_p, | ||
no_repeat_ngram_size=no_repeat_ngram_size, | ||
temperature=temperature, | ||
repetition_penalty=repetition_penalty, | ||
guidance_scale=guidance_scale, | ||
max_new_tokens=max_new_tokens | ||
# stopping_criteria=self.stopping_criteria, | ||
) | ||
|
||
actual_seq_lengths = tokenized.attention_mask.sum(dim=1) | ||
output_ids = [output_id[seq_length:] for output_id, seq_length in zip(output_ids, actual_seq_lengths)] | ||
|
||
predictions = [] | ||
for prediction in self.tokenizer.batch_decode( | ||
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False | ||
): | ||
prediction = prediction.strip() | ||
predictions.append(prediction) | ||
return predictions | ||
|
||
def score_choice(self, input_sent, labels, letter_choice=False, number_choice=False): | ||
score = [] | ||
if letter_choice: | ||
labels = [f"{chr(65 + i)}" for i, option in enumerate(labels)] | ||
if number_choice: | ||
labels = [f"{i + 1}" for i, option in enumerate(labels)] | ||
for label in labels: | ||
with torch.inference_mode(): | ||
input_sent_tokens = self.tokenizer.encode(input_sent, return_tensors='pt', | ||
add_special_tokens=False).to(self.device) | ||
label_sent_tokens = self.tokenizer.encode(label, return_tensors='pt', | ||
add_special_tokens=False).to(self.device) | ||
concatenated = torch.cat([ | ||
input_sent_tokens, | ||
label_sent_tokens, | ||
torch.tensor([[self.tokenizer.eos_token_id]]).to(self.device)], dim=-1) | ||
labels = torch.full_like(concatenated, -100).to(self.device) | ||
labels[:, -label_sent_tokens.shape[1] - 1:] = torch.cat( | ||
[label_sent_tokens, torch.tensor([[self.tokenizer.eos_token_id]]).to(self.device)], | ||
dim=-1) | ||
loss = self.model(concatenated[:, :-1], labels=labels[:, 1:]).loss | ||
normalized_loss = loss.item() / label_sent_tokens.shape[1] | ||
score.append(-normalized_loss) | ||
return self.softmax(score) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters