Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[example] add a split placement tutorial #43

Merged
merged 2 commits into from
Dec 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions examples/split_placement/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# Split Placement Example
Here we introduce how to run the naive implementation of the split placement of PPO algorithm.
We will release the complete version of flexible placement in the near future.

For quickstart, you can only follow Step 2 to modify the code and then follow Step 4 to execute the split placement example.

### Step 1: Placing the models to different GPUs
Specify the placement and resource allocation. In the example, we place the actor and reference in the first half of the GPUs while map the critic and reward model (if any) to the second half of the GPUs.
```python
actor_rollout_ref_pool_id = 'actor_rollout_ref_pool'
critic_pool_id = 'critic_pool'
if config.trainer.nnodes // 2 == 0 and config.trainer.n_gpus_per_node // 2 > 0:
resource_pool_spec = {
actor_rollout_ref_pool_id: [config.trainer.n_gpus_per_node // 2] * config.trainer.nnodes,
critic_pool_id: [config.trainer.n_gpus_per_node // 2] * config.trainer.nnodes,
}
else:
resource_pool_spec = {
actor_rollout_ref_pool_id: [config.trainer.n_gpus_per_node] * (config.trainer.nnodes // 2),
critic_pool_id: [config.trainer.n_gpus_per_node] * (config.trainer.nnodes // 2),
}
print(f'resource_pool_spec: {resource_pool_spec}')
mapping = {
Role.ActorRollout: actor_rollout_ref_pool_id,
Role.Critic: critic_pool_id,
Role.RefPolicy: actor_rollout_ref_pool_id,
}
mapping[Role.RewardModel] = critic_pool_id
```

### Step 2: Make the models executed asynchronously
Based on the model placement, we need to make the models executed asynchronously.

To do so, you need to turn off the `blocking` flag (i.e., `blocking=False`) in our decorator of some model operations.
For example, we hope the actor update and critic update can be executed in parallel, then we need to make the following modification in `fsdp_workers.py`

```
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO, blocking=False)
def update_actor(self, data: DataProto):
...

@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO, blocking=False)
def update_critic(self, data: DataProto):
...
```

We can also parallelize the computation of `ref_log_prob` and `values` and `rewards` in the split placement. For simplicity of the tutorial, we

### Step 3: Execute these operation in parallel in the single controller process
To implement the parallel execution of the actor and critic update, the only thing we need to modify in the `ray_trainer.py` is to `get` the concurrent `futures` on the single controller process.

```python
critic_output = critic_output.get()
actor_output = actor_output.get()
```

### Step 4: Run the split placement example

```
bash run_deepseek7b_llm.sh
```
131 changes: 131 additions & 0 deletions examples/split_placement/config/ppo_trainer_split.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
data:
tokenizer: null
train_files: ~/data/rlhf/gsm8k/train.parquet
val_files: ~/data/rlhf/gsm8k/test.parquet
prompt_key: prompt
max_prompt_length: 512
max_response_length: 512
train_batch_size: 1024
val_batch_size: 1312
return_raw_input_ids: False # This should be set to true when the tokenizer between policy and rm differs
return_raw_chat: False

actor_rollout_ref:
hybrid_engine: True
model:
path: ~/models/deepseek-llm-7b-chat
external_lib: null
override_config: {}
enable_gradient_checkpointing: False
actor:
strategy: fsdp # This is for backward-compatibility
ppo_mini_batch_size: 256
ppo_micro_batch_size: 64
grad_clip: 1.0
clip_ratio: 0.2
entropy_coeff: 0.001
ppo_epochs: 1
shuffle: True
optim:
lr: 1e-6
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: -1 # must be override by program
fsdp_config:
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
param_offload: False
grad_offload: False
optimizer_offload: False
ref:
fsdp_config:
param_offload: False
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
log_prob_micro_batch_size: 128
rollout:
name: vllm
temperature: 1.0
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
top_p: 1
prompt_length: ${data.max_prompt_length} # not use for opensource
response_length: ${data.max_response_length}
# for vllm rollout
dtype: bfloat16 # should align with FSDP
gpu_memory_utilization: 0.5
ignore_eos: False
enforce_eager: True
free_cache_engine: True
load_format: dummy_dtensor
tensor_model_parallel_size: 2
max_num_batched_tokens: 8192
max_num_seqs: 1024
log_prob_micro_batch_size: 128
# for hf rollout
do_sample: True

critic:
strategy: fsdp
optim:
lr: 1e-5
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: -1 # must be override by program
model:
path: ~/models/deepseek-llm-7b-chat
tokenizer_path: ${actor_rollout_ref.model.path}
override_config: {}
external_lib: ${actor_rollout_ref.model.external_lib}
enable_gradient_checkpointing: False
fsdp_config:
param_offload: False
grad_offload: False
optimizer_offload: False
wrap_policy:
# transformer_layer_cls_to_wrap: None
min_num_params: 0
ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
ppo_micro_batch_size: 64
ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
shuffle: ${actor_rollout_ref.actor.shuffle}
grad_clip: 1.0
cliprange_value: 0.5

reward_model:
enable: False
strategy: fsdp
model:
input_tokenizer: ${actor_rollout_ref.model.path} # set this to null if the chat template is identical
path: ~/models/FsfairX-LLaMA3-RM-v0.1
external_lib: ${actor_rollout_ref.model.external_lib}
fsdp_config:
min_num_params: 0
param_offload: False
micro_batch_size: 64
max_length: null

algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: gae
kl_penalty: kl # how to estimate kl divergence
kl_ctrl:
type: fixed
kl_coef: 0.001

trainer:
total_epochs: 30
project_name: verl_examples
experiment_name: gsm8k
logger: ['console', 'tracking']
nnodes: 1
n_gpus_per_node: 8
save_freq: -1
test_freq: 2
critic_warmup: 0
default_hdfs_dir: ~/experiments/gsm8k/ppo/${trainer.experiment_name}
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
200 changes: 200 additions & 0 deletions examples/split_placement/main_ppo_split.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
"""

from verl import DataProto
import torch
from verl.utils.reward_score import gsm8k, math
from verl.trainer.ppo.ray_trainer import RayPPOTrainer


def _select_rm_score_fn(data_source):
if data_source == 'openai/gsm8k':
return gsm8k.compute_score
elif data_source == 'lighteval/MATH':
return math.compute_score
else:
raise NotImplementedError


class RewardManager():

def __init__(self, tokenizer, num_examine) -> None:
self.tokenizer = tokenizer
self.num_examine = num_examine # the number of batches of decoded responses to print to the console

def __call__(self, data: DataProto):
"""We will expand this function gradually based on the available datasets"""

# If there is rm score, we directly return rm score. Otherwise, we compute via rm_score_fn
if 'rm_scores' in data.batch.keys():
return data.batch['rm_scores']

reward_tensor = torch.zeros_like(data.batch['responses'], dtype=torch.float32)

already_print_data_sources = {}

for i in range(len(data)):
data_item = data[i] # DataProtoItem

prompt_ids = data_item.batch['prompts']

prompt_length = prompt_ids.shape[-1]

valid_prompt_length = data_item.batch['attention_mask'][:prompt_length].sum()
valid_prompt_ids = prompt_ids[-valid_prompt_length:]

response_ids = data_item.batch['responses']
valid_response_length = data_item.batch['attention_mask'][prompt_length:].sum()
valid_response_ids = response_ids[:valid_response_length]

# decode
sequences = torch.cat((valid_prompt_ids, valid_response_ids))
sequences_str = self.tokenizer.decode(sequences)

ground_truth = data_item.non_tensor_batch['reward_model']['ground_truth']

# select rm_score
data_source = data_item.non_tensor_batch['data_source']
compute_score_fn = _select_rm_score_fn(data_source)

score = compute_score_fn(solution_str=sequences_str, ground_truth=ground_truth)
reward_tensor[i, valid_response_length - 1] = score

if data_source not in already_print_data_sources:
already_print_data_sources[data_source] = 0

if already_print_data_sources[data_source] < self.num_examine:
already_print_data_sources[data_source] += 1
print(sequences_str)

return reward_tensor


import ray
import hydra
from split_monkey_patch import fit


@hydra.main(config_path='config', config_name='ppo_trainer_split', version_base=None)
def main(config):
if not ray.is_initialized():
# this is for local ray cluster
ray.init(runtime_env={'env_vars': {'TOKENIZERS_PARALLELISM': 'true', 'NCCL_DEBUG': 'WARN'}})

ray.get(main_task.remote(config))


@ray.remote
def main_task(config):
from verl.utils.fs import copy_local_path_from_hdfs
from transformers import AutoTokenizer

# print initial config
from pprint import pprint
from omegaconf import OmegaConf
pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
OmegaConf.resolve(config)

# download the checkpoint from hdfs
local_path = copy_local_path_from_hdfs(config.actor_rollout_ref.model.path)

# instantiate tokenizer
tokenizer = AutoTokenizer.from_pretrained(local_path)
from verl.utils import set_pad_token_id
set_pad_token_id(tokenizer)

# define worker classes
if config.actor_rollout_ref.actor.strategy == 'fsdp':
assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
from verl.trainer.ppo.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker
from single_controller.ray import RayWorkerGroup
ray_worker_group_cls = RayWorkerGroup

elif config.actor_rollout_ref.actor.strategy == 'megatron':
assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
from verl.trainer.ppo.workers.megatron_workers import ActorRolloutRefWorker, CriticWorker
from single_controller.ray.megatron import NVMegatronRayWorkerGroup
ray_worker_group_cls = NVMegatronRayWorkerGroup

else:
raise NotImplementedError

from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role

role_worker_mapping = {
Role.ActorRollout: ActorRolloutRefWorker,
Role.Critic: CriticWorker,
Role.RefPolicy: ActorRolloutRefWorker
}

# NOTE: initialze two resource pool
actor_rollout_ref_pool_id = 'actor_rollout_ref_pool'
critic_pool_id = 'critic_pool'
if config.trainer.nnodes // 2 == 0 and config.trainer.n_gpus_per_node // 2 > 0:
resource_pool_spec = {
actor_rollout_ref_pool_id: [config.trainer.n_gpus_per_node // 2] * config.trainer.nnodes,
critic_pool_id: [config.trainer.n_gpus_per_node // 2] * config.trainer.nnodes,
}
else:
resource_pool_spec = {
actor_rollout_ref_pool_id: [config.trainer.n_gpus_per_node] * (config.trainer.nnodes // 2),
critic_pool_id: [config.trainer.n_gpus_per_node] * (config.trainer.nnodes // 2),
}
print(f'resource_pool_spec: {resource_pool_spec}')
mapping = {
Role.ActorRollout: actor_rollout_ref_pool_id,
Role.Critic: critic_pool_id,
Role.RefPolicy: actor_rollout_ref_pool_id,
}

# we should adopt a multi-source reward function here
# - for rule-based rm, we directly call a reward score
# - for model-based rm, we call a model
# - for code related prompt, we send to a sandbox if there are test cases
# - finally, we combine all the rewards together
# - The reward type depends on the tag of the data
if config.reward_model.enable:
if config.reward_model.strategy == 'fsdp':
from verl.trainer.ppo.workers.fsdp_workers import RewardModelWorker
elif config.reward_model.strategy == 'megatron':
from verl.trainer.ppo.workers.megatron_workers import RewardModelWorker
else:
raise NotImplementedError
role_worker_mapping[Role.RewardModel] = RewardModelWorker
mapping[Role.RewardModel] = critic_pool_id

reward_fn = RewardManager(tokenizer=tokenizer, num_examine=0)

# Note that we always use function-based RM for validation
val_reward_fn = RewardManager(tokenizer=tokenizer, num_examine=1)

resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

RayPPOTrainer.fit = fit
trainer = RayPPOTrainer(config=config,
tokenizer=tokenizer,
role_worker_mapping=role_worker_mapping,
resource_pool_manager=resource_pool_manager,
ray_worker_group_cls=ray_worker_group_cls,
reward_fn=reward_fn,
val_reward_fn=val_reward_fn)
trainer.init_workers()
trainer.fit()


if __name__ == '__main__':
main()
Loading
Loading