-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
89 changed files
with
1,182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,231 @@ | ||
# | ||
using NeuralROMs | ||
using LinearAlgebra, ComponentArrays # arrays | ||
using Random, Lux, MLUtils, ParameterSchedulers # ML | ||
using OptimizationOptimJL, OptimizationOptimisers # opt | ||
using LinearSolve, NonlinearSolve, LineSearches # num | ||
using JLD2 # vis / save | ||
using CUDA, LuxCUDA, KernelAbstractions # GPU | ||
using LaTeXStrings | ||
|
||
using KolmogorovArnold | ||
|
||
CUDA.allowscalar(false) | ||
|
||
# using FFTW | ||
begin | ||
nt = Sys.CPU_THREADS | ||
nc = min(nt, length(Sys.cpu_info())) | ||
|
||
BLAS.set_num_threads(nc) | ||
# FFTW.set_num_threads(nt) | ||
end | ||
|
||
include(joinpath(pkgdir(NeuralROMs), "examples", "cases.jl")) | ||
|
||
#======================================================# | ||
function uData(x; σ = 1.0f0) | ||
pi32 = Float32(pi) | ||
|
||
# @. tanh(2f0 * x) | ||
# @. sin(1f0 * x) | ||
|
||
# @. sin(5f0 * x^1) * exp(-(x/σ)^2) | ||
# @. sin(3f0 * x^2) * exp(-(x/σ)^2) | ||
|
||
@. (x - pi32/2f0) * sin(x) * exp(-(x/σ)^2) | ||
end | ||
|
||
function datagen_reg(_N, datafile; N_ = 32768) | ||
pi32 = Float32(pi) | ||
L = 2pi32 | ||
|
||
_x = LinRange(-L, L, _N) |> Array | ||
x_ = LinRange(-L, L, N_) |> Array | ||
|
||
_u = uData(_x) | ||
u_ = uData(x_) | ||
metadata = (;) | ||
|
||
_data = (_x, _u) | ||
data_ = (x_, u_) | ||
|
||
jldsave(datafile; _data, data_, metadata) | ||
|
||
filename = joinpath(dirname(datafile), "plt_data") | ||
|
||
plt = plot(_x, _u, w = 3) | ||
png(plt, filename) | ||
|
||
plt | ||
end | ||
#======================================================# | ||
|
||
function post_kan( | ||
datafile::String, | ||
modelfile::String, | ||
) | ||
data = jldopen(datafile) | ||
x, ũ = data["data_"] | ||
close(data) | ||
|
||
model = jldopen(modelfile) | ||
NN, p, st = model["model"] | ||
md = model["metadata"] | ||
close(model) | ||
|
||
@show Lux.parameterlength(NN) | ||
@show md | ||
|
||
xbatch = reshape(x, 1, :) | ||
model = NeuralModel(NN, st, md) | ||
|
||
autodiff = AutoForwardDiff() | ||
ϵ = nothing | ||
|
||
u, ud1x = dudx4_1D(model, xbatch, p; autodiff, ϵ) .|> vec | ||
ũ, ũd1x = forwarddiff_deriv4(uData, x) | ||
|
||
begin | ||
ud0_den = mse(u , 0*u) |> sqrt | ||
ud1_den = mse(ũd1x, 0*u) |> sqrt | ||
|
||
ud0x_relrmse_er = sqrt(mse(u , ũ )) / ud0_den | ||
ud1x_relrmse_er = sqrt(mse(ud1x, ũd1x)) / ud1_den | ||
|
||
ud0x_relinf_er = norm(u - ũ , Inf) / ud0_den | ||
ud1x_relinf_er = norm(ud1x - ũd1x, Inf) / ud1_den | ||
|
||
@show round.((ud0x_relrmse_er, ud0x_relinf_er), sigdigits = 8) | ||
@show round.((ud1x_relrmse_er, ud1x_relinf_er), sigdigits = 8) | ||
end | ||
|
||
p0 = plot(xabel = "x", title = "u(x,t)" , legend = false) | ||
p1 = plot(xabel = "x", title = "u'(x,t)", legend = false) | ||
|
||
plot!(p0, x, ũ, label = "Ground Truth" , w = 4, c = :black) | ||
plot!(p0, x, u, label = "Prediction" , w = 2, c = :red) | ||
|
||
# plot!(p1, x, ũd1x, label = "Ground Truth", w = 4, c = :black) | ||
# plot!(p1, x, ud1x, label = "Prediction", w = 2, c = :red) | ||
|
||
plot(p0) | ||
end | ||
|
||
#======================================================# | ||
function train_kan( | ||
datafile::String, | ||
dir::String; | ||
rng::Random.AbstractRNG = Random.default_rng(), | ||
device = Lux.cpu_device(), | ||
) | ||
#--------------------------------------------# | ||
# get data | ||
#--------------------------------------------# | ||
|
||
data = jldopen(datafile) | ||
_data = data["_data"] | ||
data_ = data["data_"] | ||
md_data = data["metadata"] | ||
close(data) | ||
|
||
_x, _u = reshape.(_data, 1, :) | ||
x_, u_ = reshape.(data_, 1, :) | ||
|
||
# normalize | ||
_x, x̄, σx = normalize_x(_x) | ||
_u, ū, σu = normalize_u(_u) | ||
|
||
x_, x̄, σx = normalize_x(x_) | ||
u_, ū, σu = normalize_u(u_) | ||
|
||
# metadata | ||
metadata = (; md_data, x̄, ū, σx, σu) | ||
|
||
_data = (_x, _u) | ||
|
||
#--------------------------------------------# | ||
# architecture hyper-params | ||
#--------------------------------------------# | ||
|
||
wi, wo = 1, 1 | ||
|
||
G = 5 | ||
h = 2 | ||
wh = 10 | ||
|
||
in_layer = KDense(wi, wh, G; use_base_act = false) | ||
hd_layer = KDense(wh, wh, G; use_base_act = false) | ||
fn_layer = KDense(wh, wo, G; use_base_act = false) | ||
|
||
NN = Chain(in_layer, fill(hd_layer, h)..., fn_layer) | ||
|
||
#--------------------------------------------# | ||
# training hyper-params | ||
#--------------------------------------------# | ||
_batchsize = 64 | ||
E = 500 | ||
|
||
lossfun = mse | ||
_batchsize = 128 | ||
|
||
# lrs = (1f-3, 5f-4, 2f-4, 1f-4, 5f-5, 2f-5, 1f-5,) | ||
lrs = (1f-3, 5f-4, 2f-4, 1f-4, 5f-5, 2f-5, 1f-5,) | ||
opts = Tuple(Optimisers.Adam(lr) for lr in lrs) | ||
Nlrs = length(lrs) | ||
|
||
nepochs = (round.(Int, E / (Nlrs) * ones(Nlrs))...,) | ||
schedules = Step.(lrs, 1f0, Inf32) | ||
early_stoppings = (fill(true, Nlrs)...,) | ||
|
||
# BFGS | ||
nepochs = (nepochs..., E,) | ||
opts = (opts..., LBFGS(),) | ||
schedules = (schedules..., Step(0f0, 1f0, Inf32),) | ||
early_stoppings = (early_stoppings..., true) | ||
|
||
#--------------------------------------------# | ||
# train | ||
#--------------------------------------------# | ||
display(NN) | ||
|
||
train_args = (; G, h, wh, E, _batchsize) | ||
metadata = (; metadata..., train_args) | ||
|
||
@show metadata | ||
|
||
@time model, ST = train_model(NN, _data; rng, | ||
_batchsize, opts, nepochs, schedules, early_stoppings, | ||
device, dir, metadata, lossfun, | ||
) | ||
|
||
# @show metadata | ||
|
||
model, ST | ||
end | ||
|
||
#======================================================# | ||
# main | ||
#======================================================# | ||
rng = Random.default_rng() | ||
Random.seed!(rng, 123) | ||
|
||
datafile = joinpath(@__DIR__, "data_reg.jld2") | ||
modeldir = joinpath(@__DIR__, "kan") | ||
modelfile = joinpath(modeldir, "model_04.jld2") | ||
device = Lux.gpu_device() | ||
|
||
E = 100 | ||
_N, N_ = 1024, 8192 # 512, 32768 | ||
_batchsize = 32 | ||
|
||
datagen_reg(_N, datafile; N_) |> display | ||
|
||
isdir(modeldir) && rm(modeldir, recursive = true) | ||
|
||
model, ST = train_kan(datafile, modeldir; rng, device) | ||
plt = post_kan(datafile, modelfile) | ||
display(plt) | ||
|
||
#======================================================# | ||
nothing |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 5.1711064e-5 || TEST LOSS: 5.1711064e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.99994826 | ||
MSE (mean SQR error): 5.1711064e-5 | ||
RMSE (Root MSE): 0.007191041 | ||
MAE (mean ABS error): 0.0053346306 | ||
maxAE (max ABS error) 0.026876211 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.99994826 | ||
MSE (mean SQR error): 5.171106e-5 | ||
RMSE (Root MSE): 0.00719104 | ||
MAE (mean ABS error): 0.0053346306 | ||
maxAE (max ABS error) 0.026876211 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 2.9061643e-5 || TEST LOSS: 2.9061643e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.99997085 | ||
MSE (mean SQR error): 2.9061643e-5 | ||
RMSE (Root MSE): 0.0053908853 | ||
MAE (mean ABS error): 0.003771622 | ||
maxAE (max ABS error) 0.01990056 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.99997085 | ||
MSE (mean SQR error): 2.906164e-5 | ||
RMSE (Root MSE): 0.005390885 | ||
MAE (mean ABS error): 0.003771622 | ||
maxAE (max ABS error) 0.01990056 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 2.1567148e-5 || TEST LOSS: 2.1567148e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.9999784 | ||
MSE (mean SQR error): 2.1567148e-5 | ||
RMSE (Root MSE): 0.004644044 | ||
MAE (mean ABS error): 0.00318697 | ||
maxAE (max ABS error) 0.017391086 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.9999784 | ||
MSE (mean SQR error): 2.156715e-5 | ||
RMSE (Root MSE): 0.0046440447 | ||
MAE (mean ABS error): 0.0031869705 | ||
maxAE (max ABS error) 0.017391086 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 1.7827306e-5 || TEST LOSS: 1.7827306e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.9999822 | ||
MSE (mean SQR error): 1.7827306e-5 | ||
RMSE (Root MSE): 0.0042222394 | ||
MAE (mean ABS error): 0.0028674833 | ||
maxAE (max ABS error) 0.015059233 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.9999822 | ||
MSE (mean SQR error): 1.7827308e-5 | ||
RMSE (Root MSE): 0.00422224 | ||
MAE (mean ABS error): 0.0028674842 | ||
maxAE (max ABS error) 0.015059233 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 1.5845942e-5 || TEST LOSS: 1.5845942e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.99998415 | ||
MSE (mean SQR error): 1.5845942e-5 | ||
RMSE (Root MSE): 0.003980696 | ||
MAE (mean ABS error): 0.0027036269 | ||
maxAE (max ABS error) 0.014859676 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.99998415 | ||
MSE (mean SQR error): 1.5845944e-5 | ||
RMSE (Root MSE): 0.0039806967 | ||
MAE (mean ABS error): 0.0027036273 | ||
maxAE (max ABS error) 0.014859676 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 1.4855471e-5 || TEST LOSS: 1.4855471e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.9999851 | ||
MSE (mean SQR error): 1.4855471e-5 | ||
RMSE (Root MSE): 0.0038542796 | ||
MAE (mean ABS error): 0.0025964177 | ||
maxAE (max ABS error) 0.014494538 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.9999851 | ||
MSE (mean SQR error): 1.485547e-5 | ||
RMSE (Root MSE): 0.0038542796 | ||
MAE (mean ABS error): 0.0025964177 | ||
maxAE (max ABS error) 0.014494538 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
Epoch [0 / 0] TRAIN LOSS: 1.4253963e-5 || TEST LOSS: 1.4253963e-5 | ||
#======================# | ||
TRAIN STATS | ||
R² score: 0.99998575 | ||
MSE (mean SQR error): 1.4253963e-5 | ||
RMSE (Root MSE): 0.003775442 | ||
MAE (mean ABS error): 0.002528878 | ||
maxAE (max ABS error) 0.01413095 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# | ||
#======================# | ||
TEST STATS | ||
R² score: 0.99998575 | ||
MSE (mean SQR error): 1.4253962e-5 | ||
RMSE (Root MSE): 0.003775442 | ||
MAE (mean ABS error): 0.002528878 | ||
maxAE (max ABS error) 0.01413095 | ||
Lipschitz bound: 1.0 | ||
|
||
#======================# |
Oops, something went wrong.