Skip to content

Commit

Permalink
name change: RSWAF1D -> TanhKernel1D. also figured out splitting of T…
Browse files Browse the repository at this point in the history
…anh kernels. Also need to attempt boosted training.
  • Loading branch information
vpuri3 committed Aug 28, 2024
1 parent f3d6407 commit c575b59
Show file tree
Hide file tree
Showing 105 changed files with 1,329 additions and 476 deletions.
32 changes: 6 additions & 26 deletions experiments_NGN/AD1D/run.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,21 +26,20 @@ data_kws = (; Ix = :, It = :)
# modeldir = joinpath(@__DIR__, "dump_dnn")

#------------------------------------------------------#
# RSWAF
# Tanh Kernels
#------------------------------------------------------#
# data_kws = (; Ix = LinRange(1, 512, 64), It = LinRange(1, 500, 500))
# data_kws = map(x -> round.(Int, x), data_kws)

train_params = (; type = :RSWAF)
train_params = (;)
evolve_params = (; scheme = :GalerkinCollocation)
# evolve_params = (; timealg = RungeKutta4())#, Δt = 1e-3, adaptive = false)

makemodel = makemodelGaussian
makemodel = makemodelTanh
modelfilename = "model_05.jld2"
modeldir = joinpath(@__DIR__, "dump_rswaf")
modeldir = joinpath(@__DIR__, "dump_tanh")

#------------------------------------------------------#
# Gaussian
# Gaussian Kernels
#------------------------------------------------------#
# data_kws = (; Ix = LinRange(1, 512, 64), It = LinRange(1, 500, 500))
# data_kws = map(x -> round.(Int, x), data_kws)
Expand All @@ -54,7 +53,7 @@ modeldir = joinpath(@__DIR__, "dump_rswaf")
# modeldir = joinpath(@__DIR__, "dump_gaussian")

#------------------------------------------------------#
# Gaussian (exact)
# Gaussian (exact IC)
#------------------------------------------------------#
# data_kws = (; Ix = LinRange(1, 256, 64), It = LinRange(1, 500, 500))
# data_kws = map(x -> round.(Int, x), data_kws)
Expand Down Expand Up @@ -104,24 +103,5 @@ for case in 5:7
# sleep(2)
end

#======================================================#
#
# ARCHITECTURE
# - Check out multiplicative feature networks.
# Maybe they can speed-up SDF type problems.
#
# GAUSSIAN REFINEMENT/CULLING
# -
#
# HYPER-REDUCTION
# - Each Gaussian needs ~5 points to be evolved properly. This should be
# helpful in hyper-reduction. We should do local sampling around each
# Gaussian. That is: uniformly pick 5 x ∈ [x̄ - 2σ, x̄ + 2σ]
#
# LITERATURE
# - Check out Gaussian process literature
#
# NEW CONTRIB
# - Make parameterization probabilistic. Then you get UQ for free.
#======================================================#
nothing
Binary file not shown.
Diff not rendered.
Diff not rendered.
Diff not rendered.
110 changes: 0 additions & 110 deletions experiments_NGN/Burg1D/dump_gaussian/project1/statistics.txt

This file was deleted.

Diff not rendered.
Diff not rendered.
Binary file removed experiments_NGN/Burg1D/dump_rswaf/project1/plt1.png
Diff not rendered.
Diff not rendered.
110 changes: 0 additions & 110 deletions experiments_NGN/Burg1D/dump_rswaf/project1/statistics.txt

This file was deleted.

110 changes: 110 additions & 0 deletions experiments_NGN/Burg1D/dump_tanh/project1/split0/statistics.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
CHECKPOINT 01
Epoch [0 / 0] TRAIN LOSS: 0.00016998869 || TEST LOSS: 0.00016998869
#======================#
TRAIN STATS
R² score: 0.99863902
MSE (mean SQR error): 0.00016998869
RMSE (Root MSE): 0.013037971
MAE (mean ABS error): 0.0098726759
maxAE (max ABS error) 0.034802139
Lipschitz bound: 1.0

#======================#
#======================#
TEST STATS
R² score: 0.99863902
MSE (mean SQR error): 0.00016998869
RMSE (Root MSE): 0.013037971
MAE (mean ABS error): 0.0098726759
maxAE (max ABS error) 0.034802139
Lipschitz bound: 1.0

#======================#
CHECKPOINT 02
Epoch [0 / 0] TRAIN LOSS: 0.00016858064 || TEST LOSS: 0.00016858064
#======================#
TRAIN STATS
R² score: 0.99865213
MSE (mean SQR error): 0.00016858064
RMSE (Root MSE): 0.012983861
MAE (mean ABS error): 0.010191589
maxAE (max ABS error) 0.033603411
Lipschitz bound: 1.0

#======================#
#======================#
TEST STATS
R² score: 0.99865213
MSE (mean SQR error): 0.00016858064
RMSE (Root MSE): 0.012983861
MAE (mean ABS error): 0.010191589
maxAE (max ABS error) 0.033603411
Lipschitz bound: 1.0

#======================#
CHECKPOINT 03
Epoch [0 / 0] TRAIN LOSS: 0.00016835895 || TEST LOSS: 0.00016835895
#======================#
TRAIN STATS
R² score: 0.99865061
MSE (mean SQR error): 0.00016835895
RMSE (Root MSE): 0.012975321
MAE (mean ABS error): 0.010319232
maxAE (max ABS error) 0.033478078
Lipschitz bound: 1.0

#======================#
#======================#
TEST STATS
R² score: 0.99865061
MSE (mean SQR error): 0.00016835895
RMSE (Root MSE): 0.012975321
MAE (mean ABS error): 0.010319232
maxAE (max ABS error) 0.033478078
Lipschitz bound: 1.0

#======================#
CHECKPOINT 04
Epoch [0 / 0] TRAIN LOSS: 0.00016817819 || TEST LOSS: 0.00016817819
#======================#
TRAIN STATS
R² score: 0.99865308
MSE (mean SQR error): 0.00016817819
RMSE (Root MSE): 0.012968353
MAE (mean ABS error): 0.01027797
maxAE (max ABS error) 0.033458792
Lipschitz bound: 1.0

#======================#
#======================#
TEST STATS
R² score: 0.99865308
MSE (mean SQR error): 0.00016817819
RMSE (Root MSE): 0.012968353
MAE (mean ABS error): 0.01027797
maxAE (max ABS error) 0.033458792
Lipschitz bound: 1.0

#======================#
CHECKPOINT 05
Epoch [0 / 0] TRAIN LOSS: 0.00016815641 || TEST LOSS: 0.00016815641
#======================#
TRAIN STATS
R² score: 0.99865294
MSE (mean SQR error): 0.00016815641
RMSE (Root MSE): 0.012967514
MAE (mean ABS error): 0.010268515
maxAE (max ABS error) 0.033389043
Lipschitz bound: 1.0

#======================#
#======================#
TEST STATS
R² score: 0.99865294
MSE (mean SQR error): 0.00016815641
RMSE (Root MSE): 0.012967514
MAE (mean ABS error): 0.010268515
maxAE (max ABS error) 0.033389043
Lipschitz bound: 1.0

#======================#
Loading

0 comments on commit c575b59

Please sign in to comment.