-
Notifications
You must be signed in to change notification settings - Fork 10
License
wcfzl/3D-CNNs-for-Liver-Classification
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
环境配置: Ubuntu 16.04 python 3.6.4 tensorflow-gpu 1.7.0 nibable 2.3.0 nilearn 0.4.2 SimpleITK 1.1.0 scilit-image 0.13.1 1.下载并解压训练集到./train_dataset/(这里将两部份训练集合并到一起); 下载并解压测试集到 ./test_dataset/ 2.数据预处理(分别对训练集和测试集预处理,处理完成后的数据集保存在 ./train_binary_128_128_128/ 和 ./test_binary_128_128_128/ 中) 运行 crop_transform.py 其中包括:去除背板 裁剪黑边 将切片组合成3D格式(nii格式) 归一化数据集大小到128*128*128 校准 数据删选 3.数据打包 运行 preprocess.py将训练集打包成keras格式(train_binary_128_128_128.h5) 4.训练,分两步进行 第一步:随机初始化(正态分布),使用Adam优化器,交叉熵作为损失函数,验证精度达到0.98时停止(需要手动停止) python train.py --opt "Adam" 第二步:前一步作为预训练,使用SGD优化器,focal_loss作为损失函数,验证精度达到0.98时停止(需要手动停止) python train.py --opt "SGD" 5.测试,我们提供了自己训练的最好模型,直接测试可以得到线上提交结果 运行 python test.py
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published