Skip to content

weavedb/ai3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AI3 - AI Owned Tokenomics Framework

AI3 is a comprehensive framework to build a sustainable tokenomics design with powerful simulations with fuzz testing, and autonomously evolve it into a permanently unbreakable protocol with LLMs.

yarn add ai3

Quick Guide

We will define simple configurations in token.js and create a test in test.js.

mkdir myai3 && cd myai3 && yarn init && yarn add ai3
touch token.js test.js

This is the overview of how the simulation works.

Variables

Define various variables for the protocol and the market in token.js.

Let's simulate a dex pair with $AI and $USDC.

export const vars = {
  iail: { name: "Initial $AI Liquidity", val: 100 },
  iusdcl: { name: "Initial $USDC Liquidity", val: 50 },
  iaip: { name: "Initial $AI Price", val: g => g("iusdcl") / g("iail") },
  ail: { name: "$AI Liquidity", val: (g, r) => r.ai },
  usdcl: { name: "$USDC Liquidity", val: (g, r) => r.usdc },
  aip: { name: "$AI Price", val: (g, r) => r.usdc / r.ai },
  buy: { name: "Total $AI Buy", val: (g, r) => r.total_buy },
  sell: { name: "Total $AI Sell", val: (g, r) => r.total_sell },
}

val can be either a number or a function to calculate a number from other variables and the simulation result.

  • g : getter function to get a variable
  • r : result from the simulation

For example, the initial $AI price (iaip) is computed by g("iusdcl") / g("iail"), and the current $AI price (aip) is computed by r.usdc / r.ai from the simulation result r.

Before / After

In before, define intermediate variables that should be tracked during the simulation and returned as the final result.

after can do final cleanups after the simulation is complete.

export const before = ({ v }) => {
  return {
    price: v.iusdcl / v.iail,
    ai: v.iail,
    usdc: v.iusdcl,
    total_buy: 0,
    total_sell: 0,
  }
}

export const after = ({ i, v, r, s }) => {
  r.diff = r.price - s[0].price // recording the $AI price difference
}
  • v : computed vars (immutable)

Players

The simulations will loop through a specified period of time and any logic to change the variables is injectable as players.

const buyer = {
  key: "BUYER",
  desc: "Buyer buys 10 $AI if the price is less than $1.",
  fn: ({ i, v, r, s }) => {
    if (r.price < 1) {
      const ai = r.ai - 10
      const usdc = (r.usdc * r.ai) / ai
      r.ai = ai
      r.usdc = usdc
      r.price = usdc / ai
      r.total_buy += 10
      s[i].buy = 10
    }
  },
}

const seller = {
  key: "SELLER",
  desc: "Seller sells 7 $AI if the price is more than $1.",
  fn: ({ i, v, r, s }) => {
    if (r.price > 1) {
      const ai = r.ai + 7
      const usdc = (r.usdc * r.ai) / ai
      r.ai = ai
      r.usdc = usdc
      r.price = usdc / ai
      r.total_sell += 7
      s[i].sell = 7
    }
  },
}

export const players = [buyer, seller]
  • i : days from the beggining
  • v : computed vars (immutable)
  • r : simulation result
  • s : daily stats

r is the final simulation result to be returned. s is an array of daily stats. All the variables in r is automatically copied to s as daily records. Players should update r and s[i] to record their action.

In the example above, daily buy and sell are recorded in s[i] as well as all the daily state of r variables (price, ai, usdc, total_buy, total_sell).

Simulate

Let's write a simulation test in test.js.

import assert from "assert"
import { describe, it } from "node:test"
import { AI3 } from "ai3"
import { vars, before, after, players } from "./token.js"

describe("AI3", () => {
  it("should simulate", async () => {
    const ai3 = new AI3({ vars })
    const { nvars, res, stats } = ai3.simulate({
      before,
      after,
      players,
      years: 1,
    })
    assert.equal(nvars.ail, 71) // nvars = new computed variables
    assert.equal(ai3.get("ail"), 71) // get a single variable
  })
})
  • nvars : new computed variables with the simulation result
  • res : simulation result
  • stats : daily stats

Add "type": "module" to package.json so we can test with ES6.

{
  "type": "module",
  "dependencies": {
    "ai3": "^0.0.2"
  }
}

Run the simulation.

node test.js

Dashboard

4 components can be customized in the dashboard app. Add each configuration in token.js.

Variable Columns

export const cols = [
  [
    {
      title: "Projections",
      vals: "iail,iusdcl,iaip,aip,diff,ail,usdcl,buy,sell",
    },
  ],
]

The displayed data formats and descriptions can be added to the vars.

  • __title__ : name of the simulation
export const vars = {
  __title__: "$AI Token",
  iail: { name: "Initial $AI Liquidity", val: 100, type: "AI" },
  iusdcl: { name: "Initial $USDC Liquidity", val: 50, decimal: 0 },
  iaip: {
    name: "Initial $AI Price",
    val: g => g("iusdcl") / g("iail"),
    calc: "IUSDCL / IAIL",
  },
  ail: {
    name: "$AI Liquidity",
    val: (g, r) => r.ai,
    type: "AI",
    calc: "DEX()",
  },
  usdcl: {
    name: "$USDC Liquidity",
    val: (g, r) => r.usdc,
    decimal: 0,
    calc: "DEX()",
  },
  aip: {
    name: "$AI Price",
    val: (g, r) => r.usdc / r.ai,
    color: "crimson",
    calc: "USDCL / AIL",
  },
  buy: {
    name: "Total $AI Buy",
    val: (g, r) => r.total_buy,
    type: "AI",
    calc: "DEX()",
  },
  sell: {
    name: "Total $AI Sell",
    val: (g, r) => r.total_sell,
    type: "AI",
    calc: "DEX()",
  },
  diff: {
    name: "$AI Price Diff",
    val: (g, r) => r.diff,
    calc: "DEX()",
  },
}

Top Stats

export const stats = g => [
  {
    title: "$AI Price",
    val: `$${(Math.floor(g("aip") * 100) / 100).toFixed(2)}`,
  },
  {
    title: "Initial Price",
    val: `$${(Math.floor(g("iaip") * 100) / 100).toFixed(2)}`,
  },
  {
    title: "Price Diff",
    val: `$${(Math.floor(g("diff") * 100) / 100).toFixed(2)}`,
  },
]

Line Graphs

export const graphs = [
  {
    key: "price",
    name: "$AI Price",
    span: 7,
    lines: [{ label: "$AI Price", key: "price", floor: false }],
  },
  {
    key: "dex",
    name: "DEX Trades",
    lines: [
      { label: "$AI Sell", key: "total_sell" },
      { label: "$AI Buy", key: "total_buy", color: "#DC143C" },
    ],
  },
]

Stats Tables

export const table = [
  {
    key: "dex",
    name: "DEX",
    cols: [
      { title: "Day", w: "40px", val: "i" },
      { title: "AI", val: "ai" },
      { title: "USDC", val: "usdc" },
      { title: "Buy", val: s => s.buy ?? 0 },
      { title: "Sell", val: s => s.sell ?? 0 },
      {
        title: "Total",
        val: s => (s.sell ?? 0) - (s.buy ?? 0),
        color: val => (val < 0 ? "crimson" : "royalblue"),
      },
      { title: "Price", val: v => `$ ${v.price.toFixed(3)}` },
    ],
  },
]

Run Dashboard App

Clone this repo and install dependencies.

git clone https://github.com/weavedb/ai3.git
cd ai3/dashboard && yarn

Replace the lib/token/index.js file with the token.js created earlier, then run the app.

yarn dev

Now the dashboard is running at localhost:3000.

Advanced

Fuzz Testing

You can design the best tokenomics by fuzz testing your simulation logic.

Let's find out the best initial USDC liquidity within the range of $10 and $100 to maximize the $AI token price in a year.

import assert from "assert"
import { describe, it } from "node:test"
import { AI3 } from "ai3"
import { vars, before, after, players } from "./token.js"
import { clone } from "ramda"

describe("AI3", () => {
  it("should find the best iusdcl", async () => {
    let max = null
    for (let i = 10; i <= 100; i++) {
      let _vars = clone(vars)
      _vars.iusdcl.val = i
      const ai3 = new AI3({ vars: _vars })
      const { nvars, res, stats } = ai3.simulate({
        before,
        after,
        players,
        years: 1,
      })
      if (!max || max.aip < nvars.aip) {
        max = { iusdcl: _vars.iusdcl.val, aip: nvars.aip, res }
      }
    }
    assert.equal(max.iusdcl, 25)
    assert.equal(Math.floor(max.aip * 100) / 100, 1.13)
  })
})

Now we know $25 is the best initial USDC liquidity, which increases the $AI price to around $1.13.

AI3 has an extremely powerful feature to simplify fuzz testing.

import assert from "assert"
import { describe, it } from "node:test"
import { AI3 } from "ai3"
import {
  vars,
  before,
  after,
  players,
} from "../../dashboard/lib/token-ai/index.js"

describe("AI3", () => {
  it("should find the best iusdcl and iail", async () => {
    const ai3 = new AI3({ vars })
    const res = ai3.fuzz({
      cases: { iusdcl: { range: [10, 101] }, iail: { range: [50, 101] } },
      find: { aip: "max", diff: "min" },
      before,
      after,
      players,
      years: 1,
    })
    assert.equal(res.aip.case.iusdcl, 10)
    assert.equal(res.aip.case.iail, 57)
    assert.equal(res.diff.case.iusdcl, 100)
    assert.equal(res.diff.case.iail, 50)
  })
})
  • cases : specify variables with a range to generate test cases with all the possible combinations.
  • find : specify variables to check with a function.

The example above will create 4500 test cases with all the possible combinations of iusdcl (10-100) and iail (50-100), then find a case that results in the biggest aip and a case that results in the smallest diff.

Plugins

AI3 plugins help building complex variables and highly intelligent players.

Plugins can be defined with __plugins__ in the vars object. Specify type and options for each plugin.

  • type : plugin type
export const vars = {
  __plugins__: {
    ai: { type: "token", ticker: "AI", supply: 10000 },
    dex: {
      type: "dex",
      tokenA: "AI",
      tokenB: "USDC",
      liquidityA: 100,
      liquidityB: 50,
    }
  }
}

Plugins will auto generate variables prefixed by the key in upper case. For example, AI_ITS, AI_P, AI_FDV will be auto-generated by the token plugin with the options above.

Plugins will also generate intermediate variables and functions to manipulate them during a simulation and they can be accessed via p object. For example, the dex plugin generates la, lb, pa, pb, and the aforementioned BUYER/SELLER could be rewritten like the following.

export const before = ({ v }) => ({ total_buy: 0, total_sell: 0 })

export const after = ({ i, v, r, s }) => {
  r.diff = p.dex.v.pa - p.ai.v.price
  p.ai.v.price = p.dex.v.pa
  r.diff = r.price - s[0].price
}

const buyer = {
  key: "BUYER",
  desc: "Buyer buys 10 $AI if the price is less than or equal to $1.",
  fn: ({ v, s, i, r, p }) => {
    if (p.dex.v.pa <= 1) {
      p.dex.buyA(10)
      r.total_buy += 10
      s[i].buy = 10
    }
  },
}

const seller = {
  key: "SELLER",
  desc: "Seller sells 7 $AI if the price is more than or equal to $1.",
  fn: ({ v, s, r, i, p }) => {
    if (p.dex.v.pa >= 1) {
      p.dex.sellA(7)
      r.total_sell += 7
      s[i].sell = 7
    }
  },
}

export const players = [buyer, seller]

Token

token emulates a simple ERC20 style token.

Options
  • ticker : token ticker
  • supply : initial total supply
Generated Variables
  • [KEY]_ITS : initial token supply
  • [KEY]_P : token price in USD
  • [KEY]_TS : token supply
  • [KEY]_FDV : fully diluted value
Intermediate Variables
  • price : token price
  • ts : token supply

DEX

dex emulates a bonding curve-based dex.

Options
  • tokenA : tokenA ticker
  • tokenB : tokenB ticker
  • liquidityA : tokenA initial liquidity
  • liquidityB : tokenB initial liquidity
Generated Variables
  • [KEY]_[TOKEN_A]_IL : tokenA initial liquidity
  • [KEY]_[TOKEN_B]_IL : tokenB initial liquidity
  • [KEY]_[TOKEN_A]_IP : tokenA initial price
  • [KEY]_[TOKEN_B]_IP : tokenB initial price
  • [KEY]_K : bonding curve constant
  • [KEY]_[TOKEN_A]_L : tokenA liquidity
  • [KEY]_[TOKEN_B]_L : tokenB liquidity
  • [KEY]_[TOKEN_A]_P : tokenA price
  • [KEY]_[TOKEN_B]_P : tokenB price
Intermediate Variables
  • la : tokenA liquidity
  • lb : tokenB liquidity
  • k : bonding curve constant
  • pa : tokenA price
  • pb : tokenB price
Functions
  • sellA ( amount ) : sell tokenA
  • sellB ( amount ) : sell tokenB
  • buyA ( amount ) : buy tokenA
  • buyB ( amount ) : buy tokenB

VC

vc emulates a fundrasing round.

Options
  • round : fundrasing round name (e.g. PreSeed)
  • ticker : round ticker (e.g. PS)
  • token : token to allocate
  • per : percentage to allocate
  • val : valuation in USD
  • vesting : vesting period in month
  • cliff : vesting cliff in month
  • sell : target token price to cash out
Generated Variables
  • [KEY]_P : percentage to allocate
  • [KEY]_V : valuation in USD
  • [KEY]_VP : vesting period in month
  • [KEY]_C : vesting cliff in month
  • [KEY]_SP : selling price
  • [KEY]_S : fundrasing sales in USD
  • [KEY]_TP : fundrasing token price
Intermediate Variables
  • p : percentage to allocate
  • vp : vesting period in month
  • c : cliff in month
  • sp : target price to sell
  • gain : capital gain
  • sold : sold token
  • unlocked : unlocked token
  • unsold : unlocked yet unsold token
  • locked : locked token
  • rate : daily unlock rate
Functions
  • unlock ( i ) : unlock vested token
  • sell ( dex ) : sell unlocked token

Building Custom Plugins

Coming soon...

Integrating LLMs

You can inject LLM-based players and let them autonomously evolve the strategies.

Currently AI3 supports GPT 4o, Claude 3.5, and Ollama to locally run opensouce LLMs.

import { AI3, GPT, Claude, Ollama } from "ai3"
import { vars, befor, after, players } from "./your_tokenomics.js"
import "dotenv/config"

const gpt_key = process.env.GPT_KEY
const claude_key = process.env.Claude_KEY

const comp = "ai_bag_usdc"
const goal = `You have 50 usdc in the "r.ai_bag_usdc".
Your goal is to maximize the profit in USDC.
"r.ai_bag_usdc", "r.ai_bag_ai", "r.ai", "r.usdc" cannot be ever negative.`
const params = { vars, before, after, players, comp, goal }

const gpt = new GPT({ apiKey: gpt_key, ...params })
const { code, res, stats, nvars } = await gpt.init() // initial attempt
const res2 = await gpt.improve() // attempt to improve the previous logic

const claude = new Claude({ apiKey: claude_key, ...params })
const res3 = await claude.init()
const res4 = await claude.improve()

// LLM should be locally running with ollama
const ollaama = new Ollama({ model: "llama3.2:1b", ...params })
const res5 = await ollaama.init()
const res6 = await ollaama.improve()

code in the returned object contains the logic the LLM generated, which can be used as the player.fn function to result in res, nvars, and stats.

  • goal : an explanation of the goal the LLM should achieve
  • comp : a name of the variable in the simulation result to maximize, or a function to compare if the new logic produces a better result

To define a custom logic with comp, return 0, 1, or 2 based on the comparison with the previous logic.

const comp = (old_res, new_res)=>{
  if(old_res.ai_bag_usdc < new_res.ai_bag_usdc){
    return 0 // the logic was successfully improved
  }else if(old_res.ai_bag_usdc === new_res.ai_bag_usdc){
    return 1 // the logic produced the same result
  }else{
    return 2 // the previous logic was better
  }
}

beat() will force the LLM to continue trying until it beats the target logic.

For example, the following will command Cloude to beat the logic previously generated by GPT.

const res3 = await claude.beat({ target: res2 })

When you just use one LLM, it will soon hit the ceiling where it cannot improve the logic anymore by itself, but if you let multiple LLMs interact with each other and collectively evolve the logic, they will autonomously improve the logic in an infinite loop. Theoretically, LLMs could create permanently sustainable tokenomics designes with a proactively evolving protocol based on constant simulations with realtime data.

AI3 is the one and only framework to effectively automate it. We can bring them fully onchain with a hyper scalable decentralized blockchain and protocol such as AO. This is the beginning of the DeFAI singularity and Nature2.0 is becoming a reality.

Protocol Owned AI Agents

In the same way, you can create AI agents that have superuser access to change protocol parameters and let them play against other players to design unbreakable tokenomics.

Coming soon...

About

AI Owned Tokenomics Framework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published