Vins-Modern (Continuously updating...) 😍
VINS has been completely reconstructed and rewritten using C++ object-oriented, and supports stereo or stereo + IMU.
- build
mkdir -p catkin_ws/src
cd catkin_ws/src
git clone https://github.com/weihaoysgs/vins-fast.git
cd ..
catkin_make -j
- run
source devel/setup.zsh # or source devel/setup.bash
roslaunch vins rviz.launch
# open new terminal
./build/vins-fast/vins/test_feature_track \
--config_file_path=/home/xx/catkin_ws/src/vins-fast/vins/config/euroc/euroc_stero.yaml
- parameter
yaml
config file.
output_path: "/home/xx/catkin_ws/" # the vio trajectory result will save as TUM format
output_file_name: "vio.txt"
ros_bag_path: "/home/xx/dataset/euroc/MH_05_difficult.bag"
cam0_calib: "/home/xx/catkin_ws/src/vins-fast/vins/config/euroc/cam0_mei.yaml"
cam1_calib: "/home/xx/catkin_ws/src/vins-fast/vins/config/euroc/cam1_mei.yaml"
The results of running on the Euroc dataset MH_05_difficult
in stereo only mode. The accuracy is evaluated by the EVO tool, the RMSE is 0.40
Generate simulate IMU data through vio-data-simulation, verify whether the pre-integration results in the program are consistent with the normal integration results, and verify the correctness of the Jacobian matrix. You can even generate an entire VIO simulation dataset to verify your slam algorithm.
The stereo IMU mode is test success, the evo_ape
result as follows, the RMSE is 0.240860
.
max 0.400143
mean 0.228765
median 0.221756
min 0.063146
rmse 0.240860
sse 64.453061
std 0.075366
- Add IMU to opt
- Add deep method
- Add other sensor