Website • Docs • Blog • LinkedIn • Community Slack
Open-source analytics engine for applying AI and ML to monitor and analyse
high-dimensionality business & system metrics.
Chaos Genius is an open source analytics engine for applying AI and ML to monitor and analyse business & system metrics across a large number of dimensions.
Using Chaos Genius, users can segment large datasets by key performance metrics (e.g. Daily Active Users, Cloud Costs, Failure Rates) and important dimensions (e.g., countryID, DeviceID, ProductID, DayofWeek) across which they want to monitor and analyse the key metrics.
Chaos Genius comes with a UI that offers simple point-and-click functionality for various tasks like adding data sources, defining the key performance metrics with dimensions and setting up advaned analytics.
- Multidimensional Drill Downs & Insights
- Anomaly Detection
- Smart Alerting
- Seasonality Detection*
- Automated Root Cause Analysis*
- Forecasting*
- What-If Analysis*
*in Short and Medium-term Roadmap
To try it out, check out our Demo.
git clone https://github.com/chaos-genius/chaos_genius
cd chaos_genius
docker-compose up
Visit http://localhost:8080
Follow this Quick Start guide or read our Documentation for more details.
Generate multidimensional drilldowns to identify the key drivers of change in defined metrics (e.g. Sales) across a large number of high cardinality dimensions (e.g. CountryID, ProductID, BrandID, Device_type).
- Techniques: Statistical Filtering, A* like path based search to deal with combinatorial explosion
Modular anomaly detection toolkit for monitoring high-dimensional time series with ability to select from different models. Tackle variations caused by seasonality, trends and holidays in the time series data.
- Models: Prophet, EWMA, EWSTD, Neural Prophet, Greykite
Actionable alerts with self-learning thresholds. Configurations to setup alert frequency & reporting to combat alert fatigue.
- Channels: Email, Slack
For any help, discussions and suggestions feel free to reach out to the Chaos Genius team and the community here:
-
GitHub (report bugs, contribute, follow roadmap)
-
Slack (discuss with the community and Chaos Genius team)
-
Book Office Hours (set up time with the Chaos Genius team for any questions or help with setup)
-
Blog (follow us on latest trends on Data, Machine Learning, Open Source and more)
Our goal is to make Chaos Genius production ready for all organisations irrespective of their data infrasturcture, data sources and scale requirements. With that in mind we have created a roadmap for Chaos Genius. If you see something missing or wish to make suggestions, please drop us a line on our Community Slack or raise an issue.
Want to contribute? Get started with:
-
Show us some love - Give us a 🌟!
-
Submit an issue.
-
Share a part of the documentation that you find difficult to follow.
-
Create a pull request. Here's a list of issues to start with. Please review our contribution guidelines before opening a pull request. Thank you for contributing!
Thanks goes to these wonderful people (emoji key):
This project follows the all-contributors specification. Contributions of any kind welcome!
Chaos Genius is licensed under the MIT license.