Skip to content

Commit

Permalink
minor updates
Browse files Browse the repository at this point in the history
  • Loading branch information
sergei.winitzki committed Jun 23, 2021
1 parent 5e7ae1c commit 39cf44c
Show file tree
Hide file tree
Showing 3 changed files with 88 additions and 86 deletions.
12 changes: 6 additions & 6 deletions sofp-src/sofp-applicative.lyx
Original file line number Diff line number Diff line change
Expand Up @@ -22870,15 +22870,15 @@ noprefix "false"
\end_layout

\begin_layout Standard
We conclude this section with a proof of the
We conclude this section with a proof of one version of the
\begin_inset Quotes eld
\end_inset

unrolling trick
\begin_inset Quotes erd
\end_inset

.
for recursive types:
\begin_inset Index idx
status collapsed

Expand Down Expand Up @@ -26190,7 +26190,7 @@ If
F^{A}\times Z & \_^{:F^{A}}\times z\rightarrow z & \bbnum 0\\
Z\times F^{B} & z\times\_^{:F^{B}}\rightarrow z & \bbnum 0\\
F^{A}\times F^{B} & \bbnum 0 & \text{zip}_{F}
\end{array}\quad;
\end{array}\quad.
\end{align*}

\end_inset
Expand Down Expand Up @@ -27150,7 +27150,7 @@ toF

\end_inset

For profunctors, the identity laws of
For profunctors, the right identity law of
\begin_inset listings
inline true
status open
Expand All @@ -27174,15 +27174,15 @@ pure

\end_inset

have the form:
has the form:
\begin_inset Formula
\[
\text{zip}_{F}(a^{:F^{A}}\times\text{pu}_{F}(b^{:B}))=a\triangleright(k^{:A}\rightarrow k\times b)^{\uparrow F}\pi_{1}^{\downarrow F}\quad.
\]

\end_inset

So, we can rewrite the left-hand side of the associativity law:
So, we can rewrite the left-hand side of the associativity law like this:
\begin_inset Formula
\begin{align*}
\text{left-hand side}:\quad & \text{zip}_{P}(p\times\text{zip}_{P}(q\times r))\triangleright\varepsilon_{1,23}^{\uparrow P}\tilde{\varepsilon}_{1,23}^{\downarrow P}=\bbnum 0+\gunderline{\text{zip}_{F}}\big(a\times\gunderline{\text{pu}_{F}}(\text{ex}_{H}(b)\times\text{ex}_{H}(c))\big)\triangleright\varepsilon_{1,23}^{\uparrow F}\tilde{\varepsilon}_{1,23}^{\downarrow F}\\
Expand Down
Loading

0 comments on commit 39cf44c

Please sign in to comment.