Skip to content

wizmal/batukh

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

batukh

Detection of Languages using CRNN.

Using pip

pip install batukh

After all the dependencies have been installed, you can train any model.

For Page Extraction(tensorflow):

>>> from batukh.tensorflow.segmenter import PageExtractor
>>> page_extractor=PageExtractor()
>>> page_extractor.load_data("temp")
>>> page_extractor.train(n_epochs=10, batch_size=1,repeat=1)
Initializing from scratch

Epoch: 1. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.95it/s, loss=0.0708]
Epoch: 2. Traininig: 100%|██████████| 70/70 [00:02<00:00, 24.35it/s, loss=0.0682]

Model saved to /content/tf_ckpts/Fri Oct 16 08:23:13 2020/ckpt-14280

Epoch: 3. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.69it/s, loss=0.0658]
Epoch: 4. Traininig: 100%|██████████| 70/70 [00:02<00:00, 24.74it/s, loss=0.0636]

Model saved to /content/tf_ckpts/Fri Oct 16 08:23:13 2020/ckpt-14420

Epoch: 5. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.68it/s, loss=0.0616]
Epoch: 6. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.95it/s, loss=0.0597]

Model saved to /content/tf_ckpts/Fri Oct 16 08:23:13 2020/ckpt-14560

Epoch: 7. Traininig: 100%|██████████| 70/70 [00:03<00:00, 23.24it/s, loss=0.0579]
Epoch: 8. Traininig: 100%|██████████| 70/70 [00:03<00:00, 23.23it/s, loss=0.0563]

Model saved to /content/tf_ckpts/Fri Oct 16 08:23:13 2020/ckpt-14700

Epoch: 9. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.44it/s, loss=0.0548]
Epoch: 10. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.54it/s, loss=0.0533]

Model saved to /content/tf_ckpts/Fri Oct 16 08:23:13 2020/ckpt-14840

For OCR(tensorflow):

>>> from batukh.tensorflow.ocr import OCR
>>> m = OCR()
>>> m.load_data("temp")
>>> m.train(10,batch_size=1,repeat=1)       
Epoch: 1. Traininig:   0%|          | 0/70 [00:00<?, ?it/s]

Initializing from scratch

Epoch: 1. Traininig: 100%|██████████| 70/70 [00:04<00:00, 15.84it/s, loss=37.1]
Epoch: 2. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.57it/s, loss=29.7]

Model saved to tf_ckpts/Fri Oct 16 09:44:35 2020/ckpt-140

Epoch: 3. Traininig: 100%|██████████| 70/70 [00:02<00:00, 24.01it/s, loss=26.8]
Epoch: 4. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.84it/s, loss=25.3]

Model saved to tf_ckpts/Fri Oct 16 09:44:35 2020/ckpt-280

Epoch: 5. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.46it/s, loss=24.4]
Epoch: 6. Traininig: 100%|██████████| 70/70 [00:02<00:00, 24.33it/s, loss=23.8]

Model saved to tf_ckpts/Fri Oct 16 09:44:35 2020/ckpt-420

Epoch: 7. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.96it/s, loss=23.3]
Epoch: 8. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.67it/s, loss=22.9]

Model saved to tf_ckpts/Fri Oct 16 09:44:35 2020/ckpt-560

Epoch: 9. Traininig: 100%|██████████| 70/70 [00:03<00:00, 23.22it/s, loss=22.6]
Epoch: 10. Traininig: 100%|██████████| 70/70 [00:02<00:00, 23.52it/s, loss=22.3]

Model saved to tf_ckpts/Fri Oct 16 09:44:35 2020/ckpt-700

For Baseline Detection(pytorch):

>>> from batukh.torch.segmenter import BaselineDetector
>>> m = BaselineDetector()
<All keys matched successfully>
>>> m.load_data("/path/to/data")
>>> m.train(n_epochs=10, device="cpu")

For OCR(pytorch):

>>> from batukh.torch.ocr import OCR
>>> m = OCR()
>>> m.load_data("/path/to/train_dir", "/path/to/train_labels", 
"/path/to/val_dir", "/path/to/val_labels")
Building Dictionary. . .
Building Dictionary. . .
>>> m.train(5)       
Epoch: 0. Traininig: 100%|███████████████| 140/140 [00:04<00:00, 30.18it/s, loss=2.59]
Epoch: 0. Validating: 100%|███████████████| 140/140 [00:01<00:00, 112.06it/s, loss=2.59]
Models Saved!
Epoch: 1. Traininig: 100%|███████████████| 140/140 [00:04<00:00, 32.39it/s, loss=2.36]
Epoch: 1. Validating: 100%|███████████████| 140/140 [00:01<00:00, 121.36it/s, loss=2.18]
Models Saved!
Epoch: 2. Traininig: 100%|███████████████| 140/140 [00:04<00:00, 31.12it/s, loss=2.54]
Epoch: 2. Validating: 100%|███████████████| 140/140 [00:01<00:00, 108.65it/s, loss=2.48]
Models Saved!
Epoch: 3. Traininig: 100%|███████████████| 140/140 [00:04<00:00, 31.10it/s, loss=2.48]
Epoch: 3. Validating: 100%|███████████████| 140/140 [00:01<00:00, 109.46it/s, loss=2.42]
Models Saved!
Epoch: 4. Traininig: 100%|███████████████| 140/140 [00:04<00:00, 30.17it/s, loss=2.49]
Epoch: 4. Validating: 100%|███████████████| 140/140 [00:01<00:00, 110.09it/s, loss=2.42]
Models Saved!