Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed #1 Update architecture to resemble LeNet-5 #21

Merged
merged 3 commits into from
Oct 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion MNIST_CNN.ipynb

This file was deleted.

233 changes: 233 additions & 0 deletions TASK1_SG.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "MNIST_CNN.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "3wF5wszaj97Y"
},
"source": [
"# MNIST using Neural Networks"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nnrWf3PCEzXL"
},
"source": [
"Run the statement to import the TensorFlow library:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "0trJmd6DjqBZ"
},
"source": [
"import tensorflow as tf"
],
"execution_count": 1,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "7NAbSZiaoJ4z"
},
"source": [
"Run the statement to load and prepare the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) and to convert the samples from integers to floating-point numbers:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "7FP5258xjs-v"
},
"source": [
"mnist = tf.keras.datasets.mnist\n",
"\n",
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
"x_train, x_test = x_train / 255.0, x_test / 255.0"
],
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "BPZ68wASog_I"
},
"source": [
"Build the model with multiple convolution, pooling, dense layers and relu activation function:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "h3IKyzTCDNGo"
},
"source": [
"model = tf.keras.models.Sequential([\n",
" tf.keras.layers.Reshape((28,28,1), input_shape=(28,28)),\n",
" tf.keras.layers.Conv2D(5, (5,5), activation='relu'),\n",
" tf.keras.layers.MaxPool2D((2,2)),\n",
" tf.keras.layers.Conv2D(15, (5,5), activation='relu'),\n",
" tf.keras.layers.MaxPool2D((2,2)), \n",
" tf.keras.layers.Flatten(),\n",
" tf.keras.layers.Dense(120, activation='relu'), \n",
" tf.keras.layers.Dense(80, activation='relu'), \n",
" tf.keras.layers.Dense(40, activation='relu'), \n",
" tf.keras.layers.Dense(10, activation='sigmoid')\n",
"])"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "hQyugpgRIyrA"
},
"source": [
"Choosing our loss function, in this case crossentropy:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "RSkzdv8MD0tT"
},
"source": [
"loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)"
],
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "9foNKHzTD2Vo"
},
"source": [
"model.compile(optimizer='adam',\n",
" loss=loss_fn,\n",
" metrics=['accuracy'])"
],
"execution_count": 5,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ix4mEL65on-w"
},
"source": [
"Adjusting the model parameters to minimize the loss of our model: "
]
},
{
"cell_type": "code",
"metadata": {
"id": "y7suUbJXVLqP",
"outputId": "679a2a7d-90f2-4827-deb6-b950793b227e",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 217
}
},
"source": [
"model.fit(x_train, y_train, epochs=5)"
],
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": [
"Epoch 1/5\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 1.5402 - accuracy: 0.9171\n",
"Epoch 2/5\n",
"1875/1875 [==============================] - 4s 2ms/step - loss: 1.4864 - accuracy: 0.9688\n",
"Epoch 3/5\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 1.4800 - accuracy: 0.9761\n",
"Epoch 4/5\n",
"1875/1875 [==============================] - 5s 2ms/step - loss: 1.4767 - accuracy: 0.9798\n",
"Epoch 5/5\n",
"1875/1875 [==============================] - 4s 2ms/step - loss: 1.4751 - accuracy: 0.9813\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<tensorflow.python.keras.callbacks.History at 0x7f1ec03ca630>"
]
},
"metadata": {
"tags": []
},
"execution_count": 6
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4mDAAPFqVVgn"
},
"source": [
"Checking the model's performance on the Validation-set."
]
},
{
"cell_type": "code",
"metadata": {
"id": "F7dTAzgHDUh7",
"outputId": "8cc7a2b0-5cbd-49f1-cd9d-544a0d4e2e50",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
}
},
"source": [
"model.evaluate(x_test, y_test, verbose=2)"
],
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"text": [
"313/313 - 1s - loss: 1.4754 - accuracy: 0.9819\n"
],
"name": "stdout"
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[1.4754043817520142, 0.9818999767303467]"
]
},
"metadata": {
"tags": []
},
"execution_count": 7
}
]
}
]
}