Skip to content

Commit

Permalink
enable and extend float-classify test
Browse files Browse the repository at this point in the history
  • Loading branch information
RalfJung authored and workingjubilee committed Sep 10, 2024
1 parent c40ee79 commit 3daa951
Show file tree
Hide file tree
Showing 3 changed files with 128 additions and 126 deletions.
74 changes: 40 additions & 34 deletions tests/ui/float/classify-runtime-const.rs
Original file line number Diff line number Diff line change
@@ -1,40 +1,46 @@
//@ compile-flags: -Zmir-opt-level=0 -Znext-solver
//@ known-bug: #110395
// FIXME(effects) run-pass
//@ run-pass
// ignore-tidy-linelength

// This tests the float classification functions, for regular runtime code and for const evaluation.

#![feature(f16_const)]
#![feature(f128_const)]
#![feature(const_float_classify)]
#![feature(const_trait_impl, effects)]
#![allow(incomplete_features)]

// Don't promote
const fn nop<T>(x: T) -> T { x }
use std::hint::black_box;
use std::num::FpCategory::*;

impl const PartialEq<NonDet> for bool {
fn eq(&self, _: &NonDet) -> bool {
true
}
}

macro_rules! const_assert {
($a:expr, $b:expr) => {
macro_rules! both_assert {
($a:expr, NonDet) => {
{
const _: () = assert!($a == $b);
assert!(nop($a) == nop($b));
// Compute `a`, but do not compare with anything as the result is non-deterministic.
const _: () = { let _val = $a; };
// `black_box` prevents promotion, and MIR opts are disabled above, so this is truly
// going through LLVM.
let _val = black_box($a);
}
};
($a:expr, $b:ident) => {
{
const _: () = assert!(matches!($a, $b));
assert!(black_box($a) == black_box($b));
}
};
}

macro_rules! suite {
( $( $tt:tt )* ) => {
( $tyname:ident: $( $tt:tt )* ) => {
fn f32() {
type $tyname = f32;
suite_inner!(f32 $($tt)*);
}

fn f64() {
type $tyname = f64;
suite_inner!(f64 $($tt)*);
}
}

}

macro_rules! suite_inner {
Expand All @@ -44,33 +50,33 @@ macro_rules! suite_inner {

$( $tail:tt )*
) => {
$( const_assert!($ty::$fn($val), $out); )*
$( both_assert!($ty::$fn($val), $out); )*
suite_inner!($ty [$($fn),*] $($tail)*)
};

( $ty:ident [$( $fn:ident ),*]) => {};
}

#[derive(Debug)]
struct NonDet;

// The result of the `is_sign` methods are not checked for correctness, since LLVM does not
// The result of the `is_sign` methods are not checked for correctness, since we do not
// guarantee anything about the signedness of NaNs. See
// https://github.com/rust-lang/rust/issues/55131.
// https://rust-lang.github.io/rfcs/3514-float-semantics.html.

suite! {
[is_nan, is_infinite, is_finite, is_normal, is_sign_positive, is_sign_negative]
-0.0 / 0.0 => [ true, false, false, false, NonDet, NonDet]
0.0 / 0.0 => [ true, false, false, false, NonDet, NonDet]
1.0 => [ false, false, true, true, true, false]
-1.0 => [ false, false, true, true, false, true]
0.0 => [ false, false, true, false, true, false]
-0.0 => [ false, false, true, false, false, true]
1.0 / 0.0 => [ false, true, false, false, true, false]
-1.0 / 0.0 => [ false, true, false, false, false, true]
suite! { T: // type alias for the type we are testing
[ classify, is_nan, is_infinite, is_finite, is_normal, is_sign_positive, is_sign_negative]
-0.0 / 0.0 => [ Nan, true, false, false, false, NonDet, NonDet]
0.0 / 0.0 => [ Nan, true, false, false, false, NonDet, NonDet]
1.0 => [ Normal, false, false, true, true, true, false]
-1.0 => [ Normal, false, false, true, true, false, true]
0.0 => [ Zero, false, false, true, false, true, false]
-0.0 => [ Zero, false, false, true, false, false, true]
1.0 / 0.0 => [ Infinite, false, true, false, false, true, false]
-1.0 / 0.0 => [ Infinite, false, true, false, false, false, true]
1.0 / T::MAX => [Subnormal, false, false, true, false, true, false]
-1.0 / T::MAX => [Subnormal, false, false, true, false, false, true]
}

fn main() {
f32();
f64();
// FIXME(f16_f128): also test f16 and f128
}
11 changes: 0 additions & 11 deletions tests/ui/float/classify-runtime-const.stderr

This file was deleted.

169 changes: 88 additions & 81 deletions tests/ui/float/conv-bits-runtime-const.rs
Original file line number Diff line number Diff line change
@@ -1,161 +1,168 @@
//@ compile-flags: -Zmir-opt-level=0
//@ run-pass

// This tests the float classification functions, for regular runtime code and for const evaluation.

#![feature(const_float_classify)]
#![feature(f16, f16_const)]
#![feature(f128, f128_const)]
#![feature(f16)]
#![feature(f128)]
#![feature(f16_const)]
#![feature(f128_const)]
#![allow(unused_macro_rules)]
// Don't promote
const fn nop<T>(x: T) -> T { x }

macro_rules! const_assert {
use std::hint::black_box;

macro_rules! both_assert {
($a:expr) => {
{
const _: () = assert!($a);
assert!(nop($a));
// `black_box` prevents promotion, and MIR opts are disabled above, so this is truly
// going through LLVM.
assert!(black_box($a));
}
};
($a:expr, $b:expr) => {
{
const _: () = assert!($a == $b);
assert_eq!(nop($a), nop($b));
assert_eq!(black_box($a), black_box($b));
}
};
}

fn has_broken_floats() -> bool {
// i586 targets are broken due to <https://github.com/rust-lang/rust/issues/114479>.
std::env::var("TARGET").is_ok_and(|v| v.contains("i586"))
cfg!(all(target_arch = "x86", not(target_feature = "sse2")))
}

#[cfg(target_arch = "x86_64")]
fn f16(){
const_assert!((1f16).to_bits(), 0x3c00);
const_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00);
const_assert!((12.5f16).to_bits(), 0x4a40);
const_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40);
const_assert!((1337f16).to_bits(), 0x6539);
const_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539);
const_assert!((-14.25f16).to_bits(), 0xcb20);
const_assert!(f16::from_bits(0x3c00), 1.0);
const_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0);
const_assert!(f16::from_bits(0x4a40), 12.5);
const_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5);
const_assert!(f16::from_bits(0x5be0), 252.0);
const_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0);
const_assert!(f16::from_bits(0xcb20), -14.25);
both_assert!((1f16).to_bits(), 0x3c00);
both_assert!(u16::from_be_bytes(1f16.to_be_bytes()), 0x3c00);
both_assert!((12.5f16).to_bits(), 0x4a40);
both_assert!(u16::from_le_bytes(12.5f16.to_le_bytes()), 0x4a40);
both_assert!((1337f16).to_bits(), 0x6539);
both_assert!(u16::from_ne_bytes(1337f16.to_ne_bytes()), 0x6539);
both_assert!((-14.25f16).to_bits(), 0xcb20);
both_assert!(f16::from_bits(0x3c00), 1.0);
both_assert!(f16::from_be_bytes(0x3c00u16.to_be_bytes()), 1.0);
both_assert!(f16::from_bits(0x4a40), 12.5);
both_assert!(f16::from_le_bytes(0x4a40u16.to_le_bytes()), 12.5);
both_assert!(f16::from_bits(0x5be0), 252.0);
both_assert!(f16::from_ne_bytes(0x5be0u16.to_ne_bytes()), 252.0);
both_assert!(f16::from_bits(0xcb20), -14.25);

// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u16 = f16::NAN.to_bits() ^ 0x0155;
const SIGNALING_NAN: u16 = f16::NAN.to_bits() ^ 0x02AA;

const_assert!(f16::from_bits(QUIET_NAN).is_nan());
const_assert!(f16::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
both_assert!(f16::from_bits(QUIET_NAN).is_nan());
both_assert!(f16::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f16::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
both_assert!(f16::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}

fn f32() {
const_assert!((1f32).to_bits(), 0x3f800000);
const_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000);
const_assert!((12.5f32).to_bits(), 0x41480000);
const_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000);
const_assert!((1337f32).to_bits(), 0x44a72000);
const_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000);
const_assert!((-14.25f32).to_bits(), 0xc1640000);
const_assert!(f32::from_bits(0x3f800000), 1.0);
const_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0);
const_assert!(f32::from_bits(0x41480000), 12.5);
const_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5);
const_assert!(f32::from_bits(0x44a72000), 1337.0);
const_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0);
const_assert!(f32::from_bits(0xc1640000), -14.25);
both_assert!((1f32).to_bits(), 0x3f800000);
both_assert!(u32::from_be_bytes(1f32.to_be_bytes()), 0x3f800000);
both_assert!((12.5f32).to_bits(), 0x41480000);
both_assert!(u32::from_le_bytes(12.5f32.to_le_bytes()), 0x41480000);
both_assert!((1337f32).to_bits(), 0x44a72000);
both_assert!(u32::from_ne_bytes(1337f32.to_ne_bytes()), 0x44a72000);
both_assert!((-14.25f32).to_bits(), 0xc1640000);
both_assert!(f32::from_bits(0x3f800000), 1.0);
both_assert!(f32::from_be_bytes(0x3f800000u32.to_be_bytes()), 1.0);
both_assert!(f32::from_bits(0x41480000), 12.5);
both_assert!(f32::from_le_bytes(0x41480000u32.to_le_bytes()), 12.5);
both_assert!(f32::from_bits(0x44a72000), 1337.0);
both_assert!(f32::from_ne_bytes(0x44a72000u32.to_ne_bytes()), 1337.0);
both_assert!(f32::from_bits(0xc1640000), -14.25);

// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u32 = f32::NAN.to_bits() ^ 0x002A_AAAA;
const SIGNALING_NAN: u32 = f32::NAN.to_bits() ^ 0x0055_5555;

const_assert!(f32::from_bits(QUIET_NAN).is_nan());
const_assert!(f32::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
both_assert!(f32::from_bits(QUIET_NAN).is_nan());
both_assert!(f32::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f32::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
both_assert!(f32::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}

fn f64() {
const_assert!((1f64).to_bits(), 0x3ff0000000000000);
const_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000);
const_assert!((12.5f64).to_bits(), 0x4029000000000000);
const_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000);
const_assert!((1337f64).to_bits(), 0x4094e40000000000);
const_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000);
const_assert!((-14.25f64).to_bits(), 0xc02c800000000000);
const_assert!(f64::from_bits(0x3ff0000000000000), 1.0);
const_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0);
const_assert!(f64::from_bits(0x4029000000000000), 12.5);
const_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5);
const_assert!(f64::from_bits(0x4094e40000000000), 1337.0);
const_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0);
const_assert!(f64::from_bits(0xc02c800000000000), -14.25);
both_assert!((1f64).to_bits(), 0x3ff0000000000000);
both_assert!(u64::from_be_bytes(1f64.to_be_bytes()), 0x3ff0000000000000);
both_assert!((12.5f64).to_bits(), 0x4029000000000000);
both_assert!(u64::from_le_bytes(12.5f64.to_le_bytes()), 0x4029000000000000);
both_assert!((1337f64).to_bits(), 0x4094e40000000000);
both_assert!(u64::from_ne_bytes(1337f64.to_ne_bytes()), 0x4094e40000000000);
both_assert!((-14.25f64).to_bits(), 0xc02c800000000000);
both_assert!(f64::from_bits(0x3ff0000000000000), 1.0);
both_assert!(f64::from_be_bytes(0x3ff0000000000000u64.to_be_bytes()), 1.0);
both_assert!(f64::from_bits(0x4029000000000000), 12.5);
both_assert!(f64::from_le_bytes(0x4029000000000000u64.to_le_bytes()), 12.5);
both_assert!(f64::from_bits(0x4094e40000000000), 1337.0);
both_assert!(f64::from_ne_bytes(0x4094e40000000000u64.to_ne_bytes()), 1337.0);
both_assert!(f64::from_bits(0xc02c800000000000), -14.25);

// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u64 = f64::NAN.to_bits() ^ 0x0005_5555_5555_5555;
const SIGNALING_NAN: u64 = f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA;

const_assert!(f64::from_bits(QUIET_NAN).is_nan());
const_assert!(f64::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
both_assert!(f64::from_bits(QUIET_NAN).is_nan());
both_assert!(f64::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f64::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
both_assert!(f64::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}

#[cfg(target_arch = "x86_64")]
fn f128() {
const_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000);
const_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000);
const_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
const_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000);
const_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
const_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000);
const_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
const_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0);
const_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0);
const_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5);
const_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5);
const_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0);
both_assert!((1f128).to_bits(), 0x3fff0000000000000000000000000000);
both_assert!(u128::from_be_bytes(1f128.to_be_bytes()), 0x3fff0000000000000000000000000000);
both_assert!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
both_assert!(u128::from_le_bytes(12.5f128.to_le_bytes()), 0x40029000000000000000000000000000);
both_assert!((1337f128).to_bits(), 0x40094e40000000000000000000000000);
both_assert!(u128::from_ne_bytes(1337f128.to_ne_bytes()), 0x40094e40000000000000000000000000);
both_assert!((-14.25f128).to_bits(), 0xc002c800000000000000000000000000);
both_assert!(f128::from_bits(0x3fff0000000000000000000000000000), 1.0);
both_assert!(f128::from_be_bytes(0x3fff0000000000000000000000000000u128.to_be_bytes()), 1.0);
both_assert!(f128::from_bits(0x40029000000000000000000000000000), 12.5);
both_assert!(f128::from_le_bytes(0x40029000000000000000000000000000u128.to_le_bytes()), 12.5);
both_assert!(f128::from_bits(0x40094e40000000000000000000000000), 1337.0);
assert_eq!(f128::from_ne_bytes(0x40094e40000000000000000000000000u128.to_ne_bytes()), 1337.0);
const_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25);
both_assert!(f128::from_bits(0xc002c800000000000000000000000000), -14.25);

// Check that NaNs roundtrip their bits regardless of signalingness
// 0xA is 0b1010; 0x5 is 0b0101 -- so these two together clobbers all the mantissa bits
// NOTE: These names assume `f{BITS}::NAN` is a quiet NAN and IEEE754-2008's NaN rules apply!
const QUIET_NAN: u128 = f128::NAN.to_bits() | 0x0000_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA_AAAA;
const SIGNALING_NAN: u128 = f128::NAN.to_bits() ^ 0x0000_5555_5555_5555_5555_5555_5555_5555;

const_assert!(f128::from_bits(QUIET_NAN).is_nan());
const_assert!(f128::from_bits(SIGNALING_NAN).is_nan());
const_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
both_assert!(f128::from_bits(QUIET_NAN).is_nan());
both_assert!(f128::from_bits(SIGNALING_NAN).is_nan());
both_assert!(f128::from_bits(QUIET_NAN).to_bits(), QUIET_NAN);
if !has_broken_floats() {
const_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
both_assert!(f128::from_bits(SIGNALING_NAN).to_bits(), SIGNALING_NAN);
}
}

fn main() {
f32();
f64();

#[cfg(target_arch = "x86_64")]
{
f16();
f128();
}
f32();
f64();
}

0 comments on commit 3daa951

Please sign in to comment.