Skip to content

Commit

Permalink
feat: update docs
Browse files Browse the repository at this point in the history
  • Loading branch information
qingtong committed Jul 4, 2024
2 parents 85e7fb9 + 37c44c2 commit 6d78953
Show file tree
Hide file tree
Showing 7 changed files with 254 additions and 2 deletions.
2 changes: 1 addition & 1 deletion public/ai-agent-pattern-crag/index.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
---
title: "Agent 设计模式——CRAG"
date: "2024-07-04"
date: "2024-07-12"
cta: "ai agent CRAG"
spoiler: "Corrective RAG(可纠正的 RAG)"
---
Expand Down
2 changes: 1 addition & 1 deletion public/ai-agent-pattern-function-calling/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -323,4 +323,4 @@ main([new HumanMessage("tell me about the weather of hangzhou")]);

2. function calling 并不会直接执行 tool,而是经过推理选择合适的 tool name 和 input 参数,tool 清晰明确的参数定义和描述,对于模型的识别能力很重要。

3. 完成一次 function calling 至少要经历 model => tool => model 的循环,如果有多 tool 场景,链路会更复杂。
3. # 完成一次 function calling 至少要经历 model => tool => model 的循环,如果有多 tool 场景,链路会更复杂。
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
252 changes: 252 additions & 0 deletions public/ai-agent-pattern-multiple-tools/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
---
title: "Agent 设计模式——multiple tools"
date: "2024-07-04"
cta: "ai agent tool-use"
spoiler: "多工具 agent 系统实例"
---

## 背景

[function calling](/ai-agent-pattern-function-calling/) 一文中,我们介绍了作为 Agent 基石的 function calling 的原理,并给出了一个 chat agent 的实现。

然而在现实场景下,agent tools 调用要复杂的多:

1. 真实世界的 API 数量多且繁杂
2. 多工具调用,解决一个问题需要使用 N 个工具,需要多轮迭代实现
3. 当 API 数量多且设计多工具时,关键点是如何有效地规划工具调用,并召回相关工具用于推理

针对这个问题,[ToolLLM](https://github.com/beijixiong1/ToolLLM)[AnyTool](https://github.com/dyabel/anytool) 这两篇 paper 提出了各自的解决方案,其中 AnyTool 是 ToolLLM 的改进版本,这里重点介绍 AnyTool。

## AnyTool

AnyTool 使用了[RapidAPI Hub](https://rapidapi.com/hub) 开源的真实世界各类 API,通过初步测试以后,收集了 3451 Tools,总共 16464 APIs。

![rapid-api](./images/rapid-api.png)

RapidAPI 自上而下分为 category(分类)、Tool(工具)、API 三层,category 包含多个 Tool,Tool 又有多个 API。例如 IMDB search 属于「Movies」分类,该 tools 下面又有 `search_by_title``get_detail` 等众多 API。这样的分类体系被用于后续多工具(multi-tools)调用 prompt engineering 的依据。

AnyTool 更好地利用了 RapidAPI 的分层结构进行 API Pool 的召回。论文里使用的是 3 类 Agent 交互的方案,分别是:

1. Meta Agent:基于用户 Query,联想问题所属分类(category),并创建对应分类的 agent
2. Category Agent: Cagetory Agent 思考相关的工具(Tool),并初始化对应 Tool Agent
3. Tool Agent: Tool Agent 召回相关的 API,合并到 API 候选池(candidate Pool)

![anyToool](./images/anytool.awebp)

以上三类 Agent 在 AnyTool 里通过 Prompt 来实现,[链接](https://github.com/dyabel/AnyTool/blob/public/anytool/prompt_template.py):

```typescript
const META_AGENT_PROMPT = `
You are APIGPT, with access to a database of APIs. This database is organized
into the following categories: {categories}. Your task is to help users
identify the relevant categories for their needs. To do this, you can
use the 'get_tools_in_category' function to retrieve the available tools
within a specific category. If you are unsure about the functionality of
some tools, the 'get_tools_descriptions' function can be used to obtain
detailed information about these tools. This information will aid you in
understanding the general functionality of each category. Additionally, the
'create_agent_category_level' function allows you to assign a relevant category
to an agent, with each agent being assigned only one category. However,
you can assign multiple categories to different agents. It is important
to explore as many categories as possible, as the solution to a query may
be found in unexpected categories. Remember, your goal is not to answer
the query directly but to identify all potentially relevant categories and
assign them to agents. Once you have completed the assignment, call the
'Finish' function.
At each step, you should call functions to actually excute your step.
All the thought is short, at most in 3 sentence.
`;

const CATEGORY_AGENT_PROMPT = `
You are APIGPT, with access to a database of APIs categorized into various
groups. Each category contains numerous tools, and each tool encompasses
multiple APIs. Your task is to assist users in finding relevant tools within
the category: {category}. If uncertain about the functionality of some tools, use
the 'get_tools_descriptions' function to obtain detailed information. Then,
employ the 'create agent tool level' function to allocate a subset of pertinent
tools to an agent, ensuring that similar tools are assigned to the same agent
and limiting the allocation to no more than five tools per agent. You may
assign different subsets to multiple agents. Remember, your role is not to
answer queries directly, but to assign all possible tools. Once you complete
the assignment, or if you determine the query is irrelevant to the tools in
the specified category, invoke the 'Finish' function.
At each step, you should call functions to actually excute your step.
All the thought is short, at most in 3 sentence.
`;

const TOOL_AGENT_PROMPT = `
You are APIGPT with access to a database of APIs, categorized into various
sections. Each category contains multiple tools, and each tool encompasses
numerous APIs. Your task is to assist users in finding relevant APIs within
the tools '{tools}' of the '{category}' category. You will be provided with
descriptions and details of these tools and their APIs. Upon identifying
relevant API names, use the 'add_apis_into_api_pool' function to add them to
the final API list. If you conclude that all possible APIs have been explored,
or if there are no relevant APIs in these tools, invoke the Finish function.
During the process, you may receive feedback on these APIs.
At each step, you should call functions to actually excute your step.
All the thought is short, at most in 3 sentence.
`;
```

AnyTool 采用的这种策略称之为 Divide-Conqure(分治策略),大模型推理成本较高,通过多层召回降低每一层的候选数量,并在同一层 Agent 推理进行并发,所以整体推理耗时相对可控。

当一轮推理结束,如果大模型给出”Give up“的结果,则使用模型放弃理由作为 Context 触发反思模式,重新触发上一层的推理。

```typescript
const REFIND_CATEGORY_PROMPT = `
Current APIs failed to solve the query and the result is: {{failed_reason}}.
Please assign more unexplored categories to the agents.
`;

const REFIND_TOOL_PROMPT = `
Current APIs failed to solve the query. The result is: {{failed_reason}}.
Please assign more unexplored tools to the agents.
`;

const REFIND_API_PROMPT = `
Current APIs failed to solve the query. The result is: {{failed_reason}}.
You need to analyze the result, and find more apis.
It is possible that the tools do not have the relevant apis. In this case, you should call the Finish function. Do not make up the tool names or api names.
`;
```

## 实现方案

基于 `Langgraph`,我们可以将 AnyTool 论文落地,产品流程如下:
![diagram](./images/langtool_diagram.png)

### 1. 定义分类、工具和 API

```typescript
export const CATEGORY_MAPPING = {
Data_and_Analytics: [
"Data",
"Database",
"Text_Analysis",
],
Travel_and_Transportation: ['Travel', 'Transportation', 'Logistics', 'Location'],
//...
};

export const apiList = [{
{
"id": "c84af6be-804a-4965-93a5-cdbc29586f00",
"category_name": "Travel",
"tool_name": "Booking com",
"api_name": "Hotels Search",
"api_description": "string",
"required_parameters": [
{
"name": "string",
"type": "STRING",
"description": "",
"default": "popularity"
},
],
"optional_parameters": [],
"method": "GET",
"api_url": "https://booking-com.p.rapidapi.com/v2/hotels/search"
},
}]

// 用户问题
const query = `I'm organizing a charity event to raise awareness for animal rights. Can you recommend a book that highlights the importance of compassion towards animals? Additionally, provide me with a random word that symbolizes unity and empathy`
```

`CATEGORY_MAPPING` 定义了 category,此处为了精简不单独列出 tools。

`apiList` 则包含了 `api` 描述,请求参数等,以及所关联的 `category_name``tool_name`

我们接下来要做的就是肝功能就用户的提问,从这 16000+ api 中大海捞针,挑选最适合的 api 并执行请求,获取我们想要的结果。

是不是很有挑战性,接下来我们一步步来实现这个挑战。

### 2. 定义图数据结构

```typescript
const graphChannels = {
// llm 实例
llm: null,
// 用户查询内容
query: null,
// 匹配类别
categories: null,
// 该类别下对应 api 列表
apis: null,
// 模型返回最佳匹配 api
bestApi: null,
// 模型从 query 提取参数
params: null,
// 执行 api 返回结果
response: null,
};
```

### 3. 定义节点

```typescript
// 1. LLM 从用户提问中提取分类
graph.addNode("extract_category_node", extractCategory);

// 2. 从前一节点提取到 category 下的所有 api 列表
graph.addNode("get_apis_node", getApis);

// 3. 选择最合适的 api
graph.addNode("select_api_node", selectApi);

// 4. 获取 api 所需参数
graph.addNode("extract_params_node", extractParameters);

// 5. 补充 api 缺失必需参数
graph.addNode("human_loop_node", requestParameters);

// 6. 执行请求,获取最终结果
graph.addNode("execute_request_node", createFetchRequest);
```

### 4. 定义连线

```typescript
// 1. 起点 => 提取分类节点
graph.addEdge(START, "extract_category_node");

// 2. 分类节点 => 分类接口接口
graph.addEdge("extract_category_node", "get_apis_node");

// 3. 分类节点 => 匹配api 节点
graph.addEdge("get_apis_node", "select_api_node");

// 4. 匹配 api 节点 => 抽取 api 参数节点
graph.addEdge("select_api_node", "extract_params_node");

// 条件判断连线
graph.addConditionalEdges("extract_params_node", verifyParams);
graph.addConditionalEdges("human_loop_node", verifyParams);

// 5. 完成 API 请求,循环结束
graph.addEdge("execute_request_node", END);

const verifyParams = (
state: GraphState
): "human_loop_node" | "execute_request_node" => {
const { bestApi, params } = state;
// 参数校验
const missingKeys = findMissingParams(
requiredParamsKeys,
extractedParamsKeys
);
// 如果必需参数校验不通过,先补充参数
if (missingKeys.length > 0) {
return "human_loop_node";
}
// 校验通过,执行请求
return "execute_request_node";
};
```

## 总结

现阶段 Agent 在生产环境的可靠性方面离传统软件还有不少距离,以 AutoGPT 为代表的 Autonomous Agent 不会是好的落地方向,因为太过强调 LLM 的自驱和自动化能力。理想的 Agent 需要具备的特性,是面向用户为中心的「human-in-loop」的交互方式,让使用者有操作可控的空间。

Tool-use agent 就像人类打开了使用工具的新世界一样,帮助 LLM 扩展能力边界,从外部寻找合适工具的助手。随着大模型的持续进化和复杂推理能力的提升,未来 agent + tools 的结合肯定大有前景。

0 comments on commit 6d78953

Please sign in to comment.