-
Notifications
You must be signed in to change notification settings - Fork 0
wyqsss/Deep-learning-for-genuine-and-posed-smile-classification
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
dependency: python 3.7, numpy 1.18.1, Pillow 7.0.0, dlib 19.19.0, opencv-python 4.2.0.32, torch 1.4.0, torchvision 0.5.0 Note! The current version of code only tested on MacOS. ########################################################################################## ########################################################################################## obtain the whole UVA-NEMO database from https://www.uva-nemo.org obtain the whole MMI database from https://mmifacedb.eu obtain the whole BBC database from https://www.bbc.co.uk/science/humanbody/mind/surveys/smiles/ obtain the whole SPOS database from https://www.oulu.fi/cmvs/node/41317 ########################################################################################## ########################################################################################## The sample data is contained in processed_data folder ########################################################################################## ########################################################################################## test.py contains the test program for deep smile net. We do not provide the test program for model performance as it is time-consuming. Only the basic test are provided. run python test.py ########################################################################################## ########################################################################################## run python demo.py for the sample training of UVA-NEMO databases, the verbose.txt will contains the log of training. Note only one public data from UVA-NEMO are provided. The model weight will be saved in database_training folder, for example if the model is trained on UVA-NEMO database, the folder names uvanemo_training demo.py is also works as the test program, run python demo.py usage: demo.py [-h] [--database DATABASE] [--batch_size BATCH_SIZE] [--label_path LABEL_PATH] [--frame_path FRAME_PATH] [--frequency FREQUENCY] [--sub SUB] [--epochs EPOCHS] [--lr LR] DeepSmileNet training, optional arguments for demo.py : -h, --help show this help message and exit --database DATABASE select the database to run, please selected from UVANEMO,SPOS,MMI and BBC --batch_size BATCH_SIZE the mini batch size used for training --label_path LABEL_PATH the path contains training labels --frame_path FRAME_PATH the path contains processed data --frequency FREQUENCY the frequency used to sample the data --sub SUB the subsitution for the model, please selected from org,LSTM,GRU,resnet,miniAlexnet,minidensenet --epochs EPOCHS number of total epochs to run --lr LR, --learning-rate LR learning rate ########################################################################################## ########################################################################################## data_preprocessin.py contains the function used to preprocess UVA-NEMO,BBC,SPOS and MMI database. The pre trained shape_predictor_68_face_landmarks model can be downloaded from http://dlib.net/files/ ########################################################################################## ########################################################################################## model.py contains the implementation of different model structures. The implementation of NonLocalBlock is from https://github.com/AlexHex7/Non-local_pytorch/tree/master/lib The implementation of ConvLSTM is based on https://github.com/ndrplz/ConvLSTM_pytorch/blob/master/convlstm.py The implmentation of resnet is based on https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py and https://github.com/zhunzhong07/Random-Erasing/blob/master/models/cifar/resnet.py The implementation of AlexNet is based on https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py #The implementation of DenseNet is based on https://github.com/kuangliu/pytorch-cifar/blob/master/models/densenet.py ########################################################################################## ##########################################################################################
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 100.0%