Skip to content

xbpeng/rl_assignments

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RL Assignments

Template code for reinforcement learning assignments.

Getting Started

Install requirements:

conda create -n rl_assignments python=3.8
conda activate rl_assignments
pip install -r requirements.txt

and it should be good to go.

Train Models

To train a policy, run the following command:

python run.py --env_config data/envs/dm_cheetah.yaml --agent_config a2/dm_cheetah_cem_agent.yaml --mode train --log_file output/log.txt --out_model_file output/model.pt --visualize --num_workers 1

  • --env_config specifies the configuration file for the environment.
  • --agent_config specifies configuration file for the agent.
  • --visualize enables visualization. Rendering should be disabled for faster training.
  • --log_file specifies the output log file, which will keep track of statistics during training.
  • --out_model_file specifies the output model file, which contains the model parameters.
  • --num_workers specifies the number of worker processes used to parallelize training.

Test Models

To load a trained model, run the following command:

python run.py --env_config data/envs/dm_cheetah_env.yaml --agent_config a2/dm_cheetah_cem_agent.yaml --mode test --model_file data/models/dm_cheetah_ppo_model.pt --visualize --num_workers 1

  • --model_file specifies the .pt file that contains parameters for the trained model. Pretrained models are available in data/models/.

Visualizing Training Logs

During training, a tensorboard events file will be saved the same output directory as the log file. The log can be viewed with:

tensorboard --logdir=output/ --port=6006 --bind_all

The output log .txt file can also be plotted using the plotting script in tools/plot_log/plot_log.py.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages