Skip to content

My first implementation of a virtual machine using Java, the GenesisVM. Running opcodes/instructions and interpreting bytecode with the flexibility to insert mnemonics and return the result.

Notifications You must be signed in to change notification settings

xersky/GenesisVM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ada385e · Feb 19, 2024

History

38 Commits
Dec 21, 2023
Feb 19, 2024
Jan 11, 2024
Feb 19, 2024
Feb 19, 2024
Dec 19, 2023
Feb 19, 2024
Jan 23, 2024
Jan 18, 2024
Feb 19, 2024
Feb 19, 2024
Feb 19, 2024

Repository files navigation

GenesisVM

An implementation of a Virtual Machine using Java. The virtual machine is capable of running instructions and interpreting bytecode. It also provides the flexibility to insert mnemonics and return the result accordingly.

Instruction Mnemonics

The virtual machine supports the following instructions, categorized by their functionality:

public enum Instruction {
    PUSH(0x00),
    POP(0x01),
    ADD(0x02),
    MUL(0x03),
    DIV(0x04),
    SUB(0x05),
    POW(0x06),
    MOD(0x07),
    RETURN(0x08),
    STOP(0x09),
    JUMP(0x0A),
    CJUMP(0x0B),
    LOAD(0x0C),
    STORE(0x0D),
    DUP(0x0E),
    SWAP(0x0F),
    GT(0x10),
    LT(0x11),
    EQ(0x12),
    LHS(0x13),
    RHS(0x14),
    NEG(0x15),
    AND(0x16),
    OR(0x17),
    XOR(0x18),
    JUMPDEST(0x19),
    NOT(0x1A),
    EXEC(0x1B),
    SLOAD(0x1C),
    SSTORE(0x1D);
    
    // ... (implementation details)
}

Arithmetic Operations

ADD, MUL, DIV, SUB, POW, MOD, NEG

Comparison Operations

GT, LT, EQ

Bitwise Operations

AND, OR, XOR, NOT, LHS, RHS

Stack Manipulation

PUSH, POP, DUP, SWAP

Control Flow

RETURN, STOP, JUMP, CJUMP, JUMPDEST

Memory Operations

LOAD, STORE

State Storage and Retrieval

SLOAD, SSTORE

Special Operations

EXEC

Features

Bytecode Interpretation: The virtual machine can interpret bytecode and execute the specified instructions.

VirtualMachine vm = new VirtualMachine();
byte[] bytecode = {
    00,00,00,00,0x17,   // PUSH 23
    00,00,00,00,03,     // PUSH 3
    03,                 // MUL
    0x08,               // RETURN
    };

Optional<Integer> result = vm.byteInterpreter(bytecode); // result of 23 * 3 should be 69

if (result.isPresent()) {
    System.out.println("Result: " + result.get()); // Result: 69
} else {
    System.out.println("No Result!");
}

Mnemonics Execution: In addition to bytecode, the virtual machine allows you to use mnemonics for a more human-readable input.

// 1 int is 4 bytes, so the representation of 23 is 00 00 00 17
String mnemonics = "PUSH 00 00 00 17 PUSH 00 00 00 03 MUL RETURN" ;

byte[] bytecodeFromMnemonics = vm.mnemonicsToByteCode(mnemonics); //converting from mnemonics to bytecode

Optional<Integer> resultFromMnemonics = vm.byteInterpreter(bytecodeFromMnemonics); // interpretating our bytecode

if (resultFromMnemonics.isPresent()) {
    System.out.println("Result: " + resultFromMnemonics.get()); // Result: 69
} else {
    System.out.println("No Result!");
}

Memory Operations: The virtual machine supports operations like loading and storing values in memory.

Control Flow: Jump and conditional jump instructions allow for control flow manipulation with a jump destination instruction for safety.

State Persistence: The state of the virtual machine, including memory, can be persisted to JSON files (State.json).

Dynamic Code Execution: Utilize the EXEC instruction to execute bytecode identified by a hash stored in the Database.json file.

Database.json:

{"23":"0x000000000100000000020208","69":"0x000000000100000000020309","1546833":"0x09"}

We will try to execute the bytecode with the 23 key hash value (Pushing 1 and 2 to the stack then adding them and returning the reesult)

    VirtualMachine vm = new VirtualMachine();

    // Specify the bytecode hash from the database
    int bytecodeHashInt = 23; // We will try to execute the bytecode with the 23 key hash value

    byte[] bytecodeHash = ByteBuffer.allocate(4).putInt(bytecodeHashInt).array(); // Converting from int to an array of bytes

    // Creating a bytecode snippet from mnemonics using the EXEC instruction then converting it to bytecode
    String mnemonics = "EXEC " +  vm.byteToString(bytecodeHash, 0, 4).trim() + " RETURN";
    System.out.println("Bytecode representation to execute: " + mnemonics);
    
    byte[] bytecodeFromDatabase = vm.mnemonicsToByteCode(mnemonics);

    // Executing the bytecode from the database and printing its result
    System.out.println(vm.byteInterpreter(bytecodeFromDatabase)); // should be 3

The result:

exec test

Code Structure

The project is organized into three main classes:

Instruction: Enum representing the supported instructions with their corresponding byte values.

VirtualMachine: The core virtual machine class responsible for bytecode interpretation and execution.

State: Represents the state of the virtual machine, including the stack and memory.

Fun Manipulation

We can test random algorithms using our VM by providing mnemonics or direct bytecode.

So let's try to make a test algorithm that returns 69 if the last two args of the stack are equal, and returns 23 if otherwise.

    // testing if the last two elements of the stack are equal (in that case below if 7 == 7)
    String ifMnemonics = "PUSH 00 00 00 07 PUSH 00 00 00 00 STORE PUSH 00 00 00 00 LOAD PUSH 00 00 00 07 EQ PUSH 00 00 00 28 CJUMP PUSH 00 00 00 17 PUSH 00 00 00 2E JUMP JUMPDEST PUSH 00 00 00 45 JUMPDEST RETURN";

    System.out.println(vm.byteInterpreter(vm.mnemonicsToByteCode(ifMnemonics))); // Should return 69

The result:

result 69

    // the same thing (but in this case comparing 3 with 7)
    String ifMnemonics = "PUSH 00 00 00 03 PUSH 00 00 00 00 STORE PUSH 00 00 00 00 LOAD PUSH 00 00 00 07 EQ PUSH 00 00 00 28 CJUMP PUSH 00 00 00 17 PUSH 00 00 00 2E JUMP JUMPDEST PUSH 00 00 00 45 JUMPDEST RETURN";

    System.out.println(vm.byteInterpreter(vm.mnemonicsToByteCode(ifMnemonics))); // Should return 23

The result:

result 23

Now to elevate the fun, I wrote and tested a set of bytecode instructions manually to execute an algorithm that returns the summation of 11 ( ∑ 11 )

        VirtualMachine vm = new VirtualMachine();
        byte[] summationOfElevenByteArray = {
            //push 11
            00,00,00,00,0x0B,
            //push 1
            00,00,00,00,01,
            //store 00 01
            00,00,00,00,01,
            0x0D,
            //store 00 00
            00,00,00,00,00,
            0x0D,
            //push 0
            00,00,00,00,00,
            //push 1
            00,00,00,00,01,
            //store 00 03
            00,00,00,00,03,
            0x0D,
            //store 00 02
            00,00,00,00,02,
            0x0D,
            //load 00 02 -starting the loop
            0x19,
            00,00,00,00,02,
            0x0C,
            //load 00 03
            00,00,00,00,03,
            0x0C,
            //add
            02,
            //store 00 02
            00,00,00,00,02,
            0x0D,
            //load 00 03
            00,00,00,00,03,
            0x0C,
            //push 1
            00,00,00,00,01,
            //add
            02,
            //store 00 03
            00,00,00,00,03,
            0x0D,
            //load 00 03
            00,00,00,00,03,
            0x0C,
            //load 00 00,
            00,00,00,00,00,
            0x0C,
            //eq
            0x12,
            0x1A,
            00,00,00,00,0x2C,
            //cjump - conditional jump to loop
            0x0B,
            //load 00 02
            00,00,00,00,02,
            0x0C,
            //load 00 00
            00,00,00,00,00,
            0x0C,
            //add - last argument
            02,
            //return
            0x08 

        };

        System.out.println(vm.byteInterpreter(summationOfTwentyThreeByteArray)); // should return 66

The result of the interpretation and VM execution (66):

PUSH
PUSH
STORE
PUSH
STORE
PUSH
PUSH
PUSH
STORE
PUSH
STORE
JUMPDEST
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
44
PUSH
LOAD
PUSH
LOAD
ADD
PUSH
STORE
PUSH
LOAD
PUSH
ADD
PUSH
STORE
PUSH
LOAD
PUSH
LOAD
EQ
NOT
PUSH
CJUMP
PUSH
LOAD
PUSH
LOAD
ADD
RETURN
Optional[66]

About

My first implementation of a virtual machine using Java, the GenesisVM. Running opcodes/instructions and interpreting bytecode with the flexibility to insert mnemonics and return the result.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages