The Scalable Video Technology for VP9 Encoder (SVT-VP9 Encoder) is a VP9-compliant encoder library core. The SVT-VP9 Encoder development is a work-in-progress targeting performance levels applicable to both VOD and Live encoding/transcoding video applications.
The SVT-VP9 Encoder is being optimized to achieve excellent performance levels currently supporting 10 density-quality presets (please refer to the user guide for more details) on a system with a dual Intel® Xeon® Scalable processor targeting:
- Real-time encoding of up to two 4Kp60 streams on the Gold 6140 with M8.
SVT-VP9 Encoder also supports 3 modes:
-
A visually optimized mode for visual quality (-tune 0)
-
An PSNR/SSIM optimized mode for PSNR / SSIM benchmarking (-tune 1 (Default setting))
-
An VMAF optimized mode for VMAF benchmarking (-tune 2)
SVT-VP9 Encoder is licensed under the OSI-approved BSD+Patent license. See LICENSE for details.
More details about the SVT-VP9 Encoder usage can be found under:
SVT-VP9 Encoder may run on any Windows* or Linux* 64 bit operating systems. The list below represents the operating systems that the encoder application and library were tested and validated on:
-
Windows* Operating Systems (64-bit):
- Windows* Server 2016
-
Linux* Operating Systems (64-bit):
-
Ubuntu* 16.04 Server LTS
-
Ubuntu* 18.04 Server LTS
-
The SVT-VP9 Encoder library supports the x86 architecture
- CPU Requirements
In order to achieve the performance targeted by the SVT-VP9 Encoder, the specific CPU model listed above would need to be used when running the encoder. Otherwise, the encoder runs on any 5th Generation Intel® Core™ processor, (Intel® Xeon® CPUs, E5-v4 or newer).
- RAM Requirements
In order to run the highest resolution supported by the SVT-VP9 Encoder, at least 10GB of RAM is required to run a 4k 8bit stream multi-threading on an 8180 system. The SVT-VP9 Encoder application will display an error if the system does not have enough RAM to support this. The following table shows the minimum amount of RAM required for some standard resolutions of 8bit video per stream:
Resolution | Minimum Footprint (GB) |
---|---|
4k | 10 |
1080p | 4 |
720p | 3 |
480p | 2 |
- Build Requirements
-
Build Instructions
- Generate the Visual Studio* 2017 project files by following the steps below cd Build\windows - run generate_vs17.bat [such would generate the visual studio project files]
- Open the "svt-vp9.sln" using Visual Studio* 2017 and click on Build -- > Build Solution
-
Binaries Location
- Binaries can be found under \Bin/Release or \Bin/Debug, depending on whether Debug or Release were selected in the build mode
-
Installation
- For the binaries to operate properly on your system, the following conditions have to be met:
- On any of the Windows* Operating Systems listed in the OS requirements section, install Visual Studio* 2017
- Once the installation is complete, copy the binaries to a location making sure that both the sample application "SvtVp9EncApp.exe” and library "SvtVp9Enc.dll” are in the same folder.
- Open the command prompt window at the chosen location and run the sample application to encode.
SvtVp9EncApp.exe -i [in.yuv] -w [width] -h [height] -b [out.ivf]. - Sample application supports reading from pipe. E.g: ffmpeg -i [input.mp4] -nostdin -f rawvideo -pix_fmt yuv420p - | SvtVp9EncApp.exe -i stdin -n [number_of_frames_to_encode] -w [width] -h [height].
-
Build Requirements
- GCC 5.4.0 or later
- CMake 3.5.1 or later
- YASM Assembler version 1.2.0 or later
-
Build Instructions
./Build/linux/build.sh <release | debug>
(if none specified, both release and debug will be built)- To build a static library and binary, append
static
- Additional options can be found by typing
./Build/linux/build.sh --help
-
Sample Binaries location
- Binaries can be found under Bin/Release and / or Bin/Debug
-
Installation For the binaries to operate properly on your system, the following conditions have to be met:
- On any of the Linux* Operating Systems listed above, copy the binaries under a location of your choice.
- Change the permissions on the sample application “SvtVp9EncApp” executable by running the command: >chmod +x SvtVp9EncApp
- cd into your chosen location
- Run the sample application to encode. > ./SvtVp9EncApp -i [in.yuv] -w [width] -h [height] -b [out.ivf].
- Sample application supports reading from pipe. E.g: >ffmpeg -i [input.mp4] -nostdin -f rawvideo -pix_fmt yuv420p - | ./SvtVp9EncApp -i stdin -n [number_of_frames_to_encode] -w [width] -h [height].
- Multi-instance support: The multi-instance functionality is a demo feature implemented in the SVT-VP9 Encoder sample application as an example of one sample application using multiple encoding libraries. Encoding using the multi-instance support is limited to only 6 simultaneous streams. For example two channels encoding on Windows: SvtVp9EncApp.exe -nch 2 -c firstchannel.cfg secondchannel.cfg
- Features enabled: The library will display an error message any feature combination that is not currently supported.
We welcome community contributions to the SVT-VP9 Encoder. Thank you for your time! By contributing to the project, you agree to the license and copyright terms in the OSI-approved BSD+Patent license and to the release of your contribution under these terms. See LICENSE for details.
-
Follow the coding guidelines
-
Validate that your changes do not break a build
-
Perform smoke tests and ensure they pass
-
Submit a pull request for review to the maintainer
Use the Issues tab on Github. To avoid duplicate issues, please make sure you go through the existing issues before logging a new one.
#svt
on Freenode. Join via Freenode Webchat or use your favorite IRC client.
The notices and disclaimers can be found here