Skip to content

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for class imbalance).

License

Notifications You must be signed in to change notification settings

xjtushujun/Meta-weight-net_class-imbalance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Meta-Weight-Net

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for class-imbalance). The implementation of noisy labels is available at https://github.com/xjtushujun/Meta-weight-net.

================================================================================================================================================================

This is the code for the paper: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng* To be presented at NeurIPS 2019.

If you find this code useful in your research then please cite

@inproceedings{han2018coteaching,
  title={Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting},
  author={Shu, Jun and Xie, Qi and Yi, Lixuan and Zhao, Qian and Zhou, Sanping and Xu, Zongben and Meng, Deyu},
  booktitle={NeurIPS},
  year={2019}
}

Setups

The requiring environment is as bellow:

  • Linux
  • Python 3+
  • PyTorch 0.4.0
  • Torchvision 0.2.0

Running Meta-Weight-Net on benchmark datasets (CIFAR-10 and CIFAR-100).

Here is an example:

python meta-weight-net-class-imbalance.py --dataset cifar100 --num_classes 100 --imb_factor 0.01

Acknowledgements

We thank the Pytorch implementation on class-balanced-loss(https://github.com/richardaecn/class-balanced-loss) and learning-to-reweight-examples(https://github.com/danieltan07/learning-to-reweight-examples).

Contact: Jun Shu ([email protected]); Deyu Meng([email protected]).

About

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for class imbalance).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages