Skip to content

xmc-aalto/ecml23-sparse

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Memory-Efficient Training for Extremely Large Output Spaces

The content of this repository provides supplementary material for the ECMLPKDD 2023 submission "Towards Memory-Efficient Training for Extremely Large Output Spaces – Learning with 500k Labels on a Single Commodity GPU"

Improved Code

If you are not interested in the exact code for that paper, we recommend to use

instead, which provide improved tf/pytorch bindings for the CUDA kernels described in this work. The kernels themselves are shared between the two implementations, and can be found at https://version.aalto.fi/gitlab/xmc/xmc-kernels.

This repository contains the implementation for several variations of a sparse layer to be used with large output spaces.

Additional Results

Results for AmazonCat-670k with CascadeXML features.

setup connectivity intermediate train-p@1 train-p@3 train-p@5 test-p@1 test-p@3 test-p@5 memory epochs time-per-epoch
Dense 768 -- 99.79 94.5 89.01 47.52 42.26 38.28 13.43 28.4 624
Unstructured 32 -- 88.83 71.44 55.62 30.42 23.75 18.96 6.27 95 1369
FFI 32 -- 92.42 83.96 74.75 37.09 31.62 27.56 0.97 76.2 234
Unstructured 32 32k 99.68 94.32 88.66 42.5 37.06 33.05 6.5 36 1512
FFI 32 16k 99.46 94 88.02 41.32 35.91 31.91 1.25 34 270
FFI 32 32k 99.67 94.32 88.66 42.59 37.12 33.13 1.45 36.4 271
FFI 32 65k 99.7 94.37 88.77 43.7 38.43 34.42 1.74 39 305
FFI 32 100k 99.67 94.32 88.67 44.71 39.3 35.29 2.38 34 334
FFI 64 16k 99.74 94.43 88.89 43.36 38.05 34.18 2.14 27 290
FFI 64 32k 99.75 94.43 88.9 44.26 38.93 35.04 2.41 31 306
FFI 64 65k 99.74 94.41 88.86 45.26 39.81 35.88 2.55 33 391
FFI 64 100k 99.72 94.39 88.81 45.65 40.33 36.39 2.91 31 435
FFI 72 65k 99.75 94.44 88.9 45.25 39.9 35.99 2.7 31 440
Bottleneck 64 64 99.08 93.28 86.39 38 33.74 30.39 1.13 31.6 232

Results for AmazonCat-670k with Slice features.

setup connectivity intermediate train-p@1 train-p@3 train-p@5 test-p@1 test-p@3 test-p@5 memory epochs time-per-epoch
Dense 512 -- 99.18 93.91 88.39 33.76 29.62 26.58 8.96 27.2 472
Unstructured 32 -- 64.77 49.37 38.98 14.45 11.54 9.51 6.36 73 1357
FFI 32 -- 16.17 13.9 12.42 7.12 6.3 5.64 0.97 24.8 223
Unstructured 32 32k 98.85 93.41 87.53 32.65 28.68 25.79 6.42 45 1618
FFI 32 16k 98.22 92.45 85.96 31.73 27.86 25.02 1.11 42 259
FFI 32 32k 98.7 93.24 87.35 32.8 28.75 25.91 1.23 38 244
FFI 32 65k 98.96 93.61 87.98 33.7 29.69 26.84 1.35 36 309
FFI 32 100k 99.04 93.72 88.15 34.25 30.2 27.34 1.77 35 302
FFI 64 16k 99.1 93.8 88.19 33.16 29.17 26.41 1.95 33 301
FFI 64 32k 99.1 93.79 88.25 33.93 29.87 27.07 2.22 32 314
FFI 64 65k 99.09 93.79 88.26 34.56 30.5 27.69 2.54 30 396
FFI 64 100k 99.07 93.76 88.22 35.02 30.98 28.09 2.58 29 411
Bottleneck 64 64 96.36 88.88 80.08 30.69 27.33 24.56 1.13 33.6 219

Results for Wiki500k with CascadeXML features

setup connectivity intermediate train-p@1 train-p@3 train-p@5 test-p@1 test-p@3 test-p@5 memory epochs time-per-epoch
Dense 768 -- 96.7 79.72 64.24 77.17 58.55 45.11 10.04 25.6 1744
Unstructured 32 -- 78.27 54.69 39.82 65.25 43.73 31.4 4.79 100 3870
FFI 32 -- 69.09 51.79 40.44 58.67 41.98 32.2 0.72 59.4 715
Unstructured 32 32k 92.41 73.53 58.13 73.7 54.75 42.01 4.91 58 4423
FFI 32 16k 90.71 71.44 56.32 73.12 54.15 41.52 0.92 68 746
FFI 32 32k 92.96 74.31 58.89 73.65 54.78 42.06 1.02 67.4 842
FFI 32 65k 94.35 76.31 60.84 74.05 55.42 42.63 1.57 56 928
FFI 32 100k 94.45 76.57 61.14 74.32 55.76 42.95 2.36 49 1262
FFI 64 16k 94.08 76.01 60.4 74.39 55.63 42.75 1.67 56 878
FFI 64 32k 94.77 77.05 61.48 74.39 55.81 42.93 1.9 48 929
FFI 64 65k 95.28 77.83 62.32 74.51 56.05 43.19 2.03 43 1167
FFI 64 100k 95.84 78.64 63.14 74.63 56.24 43.37 2.65 45 1530
Bottleneck 64 64 86.43 64.81 49.5 71.9 50.7 37.93 0.96 47.6 678

Results for Wiki500k with Slice features

setup connectivity intermediate train-p@1 train-p@3 train-p@5 test-p@1 test-p@3 test-p@5 memory epochs time-per-epoch
Dense 512 -- 97.33 77.47 60.41 58.25 37.91 28.03 6.7 39.4 1249
Unstructured 32 -- 58.33 37.7 28.07 45.49 27.29 19.86 4.79 78 3612
FFI 32 -- 42.64 28.01 21.95 37.53 23.22 17.64 0.72 54.8 659
Unstructured 32 32k 83.74 61.42 47.69 59.01 38.48 28.9 4.81 40 3977
FFI 32 16k 80.26 58.19 45.12 58 37.74 28.36 0.92 59 946
FFI 32 32k 84.24 62.19 48.39 58.86 38.44 28.87 1.04 45.8 723
FFI 32 65k 88.46 66.83 52.23 59.83 39.24 29.48 1.18 37 821
FFI 32 100k 89.83 68.51 53.69 60.56 39.79 29.93 1.59 34 1106
FFI 64 16k 86.5 64.55 50.19 59.38 38.68 29.01 1.54 52 807
FFI 64 32k 89.06 67.44 52.62 59.97 39.25 29.45 1.78 43 843
FFI 64 65k 92.19 71.21 55.81 60.51 39.75 29.83 1.92 38 1035
FFI 64 100k 93.29 72.76 57.21 61.02 40.17 30.18 2.06 38 1335
Bottleneck 64 64 71.79 50.01 38.48 56.5 36.52 27.5 0.97 41.8 639

Preliminary results for Amazon3M with CascadeXML features

setup connectivity intermediate train-p@1 train-p@3 train-p@5 test-p@1 test-p@3 test-p@5 memory epochs time-per-epoch
Dense 768 -- 89.89 83.94 79.44 53.36 50.65 48.38 56.36 37 4228
FFI 32 65k 68.08 62.01 58.03 48.07 44.11 41.44 4.47 100 1901
FFI 32 131k 71.18 64.84 60.64 49.12 45 42.3 5.01 100 1902
FFI 64 131k 78.12 71.96 67.64 50.4 46.74 44.21 8.67 100 2337
FFI 96 131k 82.99 76.8 72.3 51.02 47.64 45.22 12.61 100 2776

Building the library

First, create a conda environment as provided by environment.yml, e.g. through

conda conda env create -f environment.yml

Activate the environment. Then, configure CMake for a build directory (e.g. build) and run the build

cmake -S . -B build
cmake --build build --target sparseops

After this, there should be a file build/libsparseops.so which contains the compiled parts of the library.

Running the python code

The sparse subdirectory contains the glue code that makes the custom kernels usable in tensorflow (the ops subdirectory), and several implementations of sparse multiplication layers and corresponding utilities (layers subdirectory). In order to be able to use the fast sparse layer, the libsparseops.so file needs to be placed alongside ops/fixed_fan_in_ops.py.

An example script is given in run.py, which runs a (sparse) training experiment specified in a json file. The tasks uses for the paper are given in the tasks subdirectory.

About

ECML23 paper+code+supplementary

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published