Skip to content

Commit

Permalink
add BinarySortTree 🆕 📖
Browse files Browse the repository at this point in the history
  • Loading branch information
haiji.yang committed Dec 31, 2020
1 parent 6018c28 commit 23cac13
Show file tree
Hide file tree
Showing 6 changed files with 587 additions and 0 deletions.
1 change: 1 addition & 0 deletions note/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@
- [🔖 向量与数组](datastructureAlgorithm/book/datastructure/VectorOrArrayList.md)
- [🔖 列表](datastructureAlgorithm/book/datastructure/List.md)
- [🔖 树](datastructureAlgorithm/book/datastructure/Tree.md)
- [🔖 二叉排序树](datastructureAlgorithm/book/datastructure/BinarySortTree.md)
- [🔖 跳表](datastructureAlgorithm/book/datastructure/skipList.md)
#### [🔖 2.2 算法篇](datastructureAlgorithm/README.md)
##### [🔖 排序算法](datastructureAlgorithm/README.md)
Expand Down
1 change: 1 addition & 0 deletions note/datastructureAlgorithm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
- [🔖 向量与数组](book/datastructure/VectorOrArrayList.md)
- [🔖 列表](book/datastructure/List.md)
- [🔖 树](book/datastructure/Tree.md)
- [🔖 二叉排序树](book/datastructure/BinarySortTree.md)
- [🔖 跳表](book/datastructure/skipList.md)
#### 算法
##### [排序算法](README.md)
Expand Down
329 changes: 329 additions & 0 deletions note/datastructureAlgorithm/book/datastructure/BinarySortTree.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
## 二叉排序树(BST)

### 介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

![bst](img/bst/bst01.jpg)

### 二叉排序树创建和遍历
一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创建成对应的二叉排序树为 :

```java
7
/ \
3 10
/ \ / \
1 5 9 12
```
### 二叉排序树的删除
二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
1) 删除叶子节点 (比如:2, 5, 9, 12)
2) 删除只有一颗子树的节点 (比如:1)
3) 删除有两颗子树的节点. (比如:7, 3,10 )
4) 操作的思路分析

```java
//对删除结点的各种情况的思路分析:

第一种情况:
删除叶子节点 (比如:2, 5, 9, 12)
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 是 parent 的左子结点 还是右子结点
(4) 根据前面的情况来对应删除左子结点 parent.left = null
右子结点 parent.right = null;
第二种情况: 删除只有一颗子树的节点 比如 1
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 确定 targetNode 的子结点是左子结点还是右子结点
(4) targetNode 是 parent 的左子结点还是右子结点
(5) 如果 targetNode 有左子结点
5. 1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.left;
5.2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.left;
(6) 如果 targetNode 有右子结点
6.1 如果 targetNode 是 parent 的左子结点
parent.left = targetNode.right;
6.2 如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right

情况三 : 删除有两颗子树的节点. (比如:7, 310 )
思路
(1) 需求先去找到要删除的结点 targetNode
(2) 找到 targetNode 的 父结点 parent
(3) 从 targetNode 的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存 temp = 11
(5) 删除该最小结点
(6) targetNode.value = temp

```
### 代码实现
```java
package com.javayh.advanced.datastructure.tree.sort;

/**
* <p>
* 二叉排序树
* </p>
*
* @author Dylan
* @version 1.0.0
* @since 2020-12-31 8:04 PM
*/
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
BinarySortTree binarySortTree = new BinarySortTree();
//循环的添加结点到二叉排序树
for (int value : arr) {
binarySortTree.add(new Node(value));
}
//中序遍历二叉排序树
System.out.println("中序遍历二叉排序树~");
binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
//测试一下删除叶子结点
binarySortTree.delNode(12);
binarySortTree.delNode(5);
binarySortTree.delNode(10);
binarySortTree.delNode(2);
binarySortTree.delNode(3);
binarySortTree.delNode(9);
System.out.println("del后中序遍历二叉排序树~");
binarySortTree.infixOrder();
}
}

class BinarySortTree {
private Node root;

//查找要删除的结点
public Node search(int value) {
if (root == null) {
return null;
} else {
return root.search(value);
}
}

//查找父结点
public Node searchParent(int value) {
if (root == null) {
return null;
} else {
return root.searchParent(value);
}
}

//编写方法:
//1. 返回的 以 node 为根结点的二叉排序树的最小结点的值
//2. 删除 node 为根结点的二叉排序树的最小结点

/**
* @param node 传入的结点(当做二叉排序树的根结点)
* @return 返回的 以 node 为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
//循环的查找左子节点,就会找到最小值
while (target.left != null) {
target = target.left;

}
//这时 target 就指向了最小结点
//删除最小结点
delNode(target.value);
return target.value;
}

//删除结点
public void delNode(int value) {
if (root == null) {
return;
} else {
//1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
//如果没有找到要删除的结点
if (targetNode == null) {
return;
}
//如果我们发现当前这颗二叉排序树只有一个结点
if (root.left == null && root.right == null) {
root = null;
return;
}
//去找到 targetNode 的父结点
Node parent = searchParent(value);
//如果要删除的结点是叶子结点
if (targetNode.left == null && targetNode.right == null) {
//判断 targetNode 是父结点的左子结点,还是右子结点
if (parent.left != null && parent.left.value == value) { //是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {//是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { // 删除只有一颗子树的结点
//如果要删除的结点有左子结点
if (targetNode.left != null) {
if (parent != null) {
//如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { //如果要删除的结点有右子结点
if (parent != null) {
//如果 targetNode 是 parent 的左子结点
if (parent.left.value == value) {
parent.left = targetNode.right;
} else { //如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}

//添加结点的方法
public void add(Node node) {
if (root == null) {
root = node;//如果 root 为空则直接让 root 指向 node
} else {
root.add(node);
}
}

//中序遍历
public void infixOrder() {
if (root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}


}

class Node {
int value;
Node left;
Node right;

public Node(int value) {
this.value = value;
}

/**
* 查找要删除的结点
*
* @param value 希望删除的结点的值
* @return 如果找到返回该结点,否则返回 null
*/
public Node search(int value) {
//找到就是该结点
if (value == this.value) {
return this;
}//如果查找的值小于当前结点,向左子树递归查找
else if (value < this.value) {
//如果左子结点为空
if (this.left == null) {
return null;
}
return this.left.search(value);
} else { //如果查找的值不小于当前结点,向右子树递归查找
if (this.right == null) {
return null;
}
return this.right.search(value);
}
}

public Node searchParent(int value) {
//如果当前结点就是要删除的结点的父结点,就返回
if ((this.left != null && this.left.value == value) ||
(this.right != null && this.right.value == value)) {
return this;
} else {
//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if (value < this.value && this.left != null) {
//向左子树递归查找
return this.left.searchParent(value);
} else if (value >= this.value && this.right != null) {
//向右子树递归查找
return this.right.searchParent(value);
} else {
// 没有找到父结点
return null;
}
}
}

@Override
public String toString() {
return "Node [value=" + value + "]";

}

/**
* 添加结点的方法,递归的形式添加结点,注意需要满足二叉排序树的要求
*
* @param node
*/
public void add(Node node) {
if (node == null) {
return;

}
//判断传入的结点的值,和当前子树的根结点的值关系
if (node.value < this.value) {
//如果当前结点左子结点为 null
if (this.left == null) {
this.left = node;
} else {
//递归的向左子树添加
this.left.add(node);
}
} else { //添加的结点的值大于 当前结点的值
if (this.right == null) {
this.right = node;
} else {
//递归的向右子树添加
this.right.add(node);
}
}
}

//中序遍历
public void infixOrder() {
if (this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.infixOrder();
}
}

}
```




Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 23cac13

Please sign in to comment.