Skip to content

yanxue7/E3T-Overcooked

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

E3T

This work propose an efficient end-to-end trainning approach that combines the mixed partner policy and partner modeling module for zero-shot coordiantion on Overcooked. Our work builds on the codebase of ”On the Utility of Learning about Humans for Human-AI Coordination”, thus we only provide the modified and added source codes in this repository. To run our experiments, please follow the instructions of the original codebase and then merge our files with it.

Installation

conda create -n harl python=3.7
conda activate harl
pip install -r environment.yml
conda install mpi4py
conda install certifi
pip install opencv-python
cd baselines
pip install -e .
cd stable-baselines 
pip install -e .
cd overcooked_ai
pip install -e .
export PYTHONPATH=$PYTHONPATH:/$root path$/human_coordination/
export PYTHONPATH=$PYTHONPATH:/$root path$/human_coordination/human_aware_rl


Train E3T

cd human_aware_rl
sh experiments/ppo_sp_experiments.sh

Source code introduction

encoder_ppo.py parameters
encoder_ppo2.py training process
encoder_model.py compute loss
encoder_polices.py networks
encoder_runner.py collecting datas

Evaluate with human proxy

cd human_aware_rl
python experiments/encoder_ppo_sp_experiments_lstm.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published