Skip to content

Commit

Permalink
Add an example
Browse files Browse the repository at this point in the history
  • Loading branch information
yoshitomo-matsubara committed Dec 26, 2024
1 parent 9c44685 commit e39f7ab
Showing 1 changed file with 66 additions and 0 deletions.
66 changes: 66 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,72 @@ and in many cases, you will **NOT need to write Python code at all**.
Take a look at some configurations available in [configs/](https://github.com/yoshitomo-matsubara/torchdistill/tree/main/configs/).
You'll see what modules are abstracted and how they are defined in a declarative PyYAML config file to design an experiment.

E.g., instantiate CIFAR-10 datasets with a declarative PyYAML config file
```python
from torchdistill.common import yaml_util
config = yaml_util.load_yaml_file('./test.yaml')
train_dataset = config['datasets']['cifar10/train']
test_dataset = config['datasets']['cifar10/test']
```

`test.yaml`
```yaml
datasets:
cifar10/train: !import_call
_name: &dataset_name 'cifar10'
_root: &root_dir !join ['~/datasets/', *dataset_name]
key: 'torchvision.datasets.CIFAR10'
init:
kwargs:
root: *root_dir
train: True
download: True
transform: !import_call
key: 'torchvision.transforms.Compose'
init:
kwargs:
transforms:
- !import_call
key: 'torchvision.transforms.RandomCrop'
init:
kwargs:
size: 32
padding: 4
- !import_call
key: 'torchvision.transforms.RandomHorizontalFlip'
init:
kwargs:
p: 0.5
- !import_call
key: 'torchvision.transforms.ToTensor'
init:
- !import_call
key: 'torchvision.transforms.Normalize'
init:
kwargs: &normalize_kwargs
mean: [0.49139968, 0.48215841, 0.44653091]
std: [0.24703223, 0.24348513, 0.26158784]
cifar10/test: !import_call
key: 'torchvision.datasets.CIFAR10'
init:
kwargs:
root: *root_dir
train: False
download: True
transform: !import_call
key: 'torchvision.transforms.Compose'
init:
kwargs:
transforms:
- !import_call
key: 'torchvision.transforms.ToTensor'
init:
- !import_call
key: 'torchvision.transforms.Normalize'
init:
kwargs: *normalize_kwargs
```
If you want to use your own modules (models, loss functions, datasets, etc) with this framework,
you can do so without editing code in the local package `torchdistill/`.
See [the official documentation](https://yoshitomo-matsubara.net/torchdistill/usage.html) and [Discussions](https://github.com/yoshitomo-matsubara/torchdistill/discussions) for more details.
Expand Down

0 comments on commit e39f7ab

Please sign in to comment.