Hi-COVIDNet : Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea
Source code and datasets of the paper [Hi-COVIDNet : Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea]
Since the data from Korea Telecom(KT) is not open to the public, if you would like to run the code, please contact KT.
Requirements
- Python 3.6 (Recommend Anaconda)
- Ubuntu 16.04.3 LTS
- Pytorch >= 1.2.0
- Download all codes (*.py) and put them in the same folder
- Create "model_grid_search" folder in the same folder
- Create "pickled_ds" folder for dataset and mean_std data
- Open terminal in the same folder
- Run "python data_loader.py" to preprocess and save data in ".pkl" format
python data_loader.py -h
usage: data_loader.py [-h] [--output_size O] [--save]
Hi-covidnet DATALOADER
optional arguments:
-h, --help show this help message and exit
--output_size O How many days you are predicting(default: 14)
--save Saving pre-processed data
example usage :
python data_loader.py --output_size 14
data shape is 32 (14, 10)
target_continent shape is (32, 14, 6) target_total shape is (32, 14)
Loading KT roaming data
Loading infection ratio data
Loading passenger flights data
Normalizing continent target
Normalizing total target
- Run "python main.py" to train Hi-COVIDNet
python main.py -h
usage: main.py [-h] [--epochs N] [--model_path MODEL_PATH] [--gpu_id GPU_ID]
[--lr LR] [--beta BETA] [--hidden_size HIDDEN]
[--output_size OUTPUT] [--is_aux] [--is_tm]
Hi-covidnet
optional arguments:
-h, --help show this help message and exit
--epochs N number of epochs to train (default: 100)
--model_path MODEL_PATH
prefix of path of the model
--gpu_id GPU_ID gpu_ids: e.g. 0,1,2,3,4,5
--lr LR learning rate (default: 0.03)
--beta BETA ratio of continent loss and total loss (default: 0.5)
--hidden_size HIDDEN hidden size of LSTM and Transformer(default: 4) e.g.
2,4,8, ... depending on your dataset
--output_size OUTPUT How many days you are predicting
--is_aux use auxilary data
--is_tm use transformer
Please check the hyperparameters of Hi-COVIDNet defined in main.py