running: ./extract_graph_features/process.sh
version (5 gpu cores) to allow running the model on the larger dataset (for example biokg). This version of the model is in the folder: ./5_gpu_version_of_model_for_large_datasets
FB15k237:
python run.py --do_train --do_test -save ../experiments/kge_baselines_fb237 --data_path ../data/FB15K237 --model MDE -n 1000 -b 1000 -d 200 -g 4.0 -a 2.5 -adv -lr .0005 --max_steps 300000 --test_batch_size 2 --valid_steps 10000 --log_steps 10000 --do_valid -node_feat_path ../data/FB15K237/train_node_features --cuda -psi 15.0
biokg:
python run_with5_gpu.py --init_checkpoint ../experiments/kge_baselines_biokg_400_600_850_2 --do_train --do_test -save ../experiments/kge_baselines_biokg_400_600_850 --data_path ../data/biokg --model MDE -n 850 -b 600 -d 400 -g 2.5 -a 2.5 -adv -lr .0005 --max_steps 700000 --test_batch_size 2 --valid_steps 10000 --log_steps 10000 --do_valid -node_feat_path ../data/biokg/train_node_features --cuda -psi 14.0
If you use the model, please cite the following paper:
@inproceedings{gfa2021ECML,
title={Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities},
author={Sadeghi, Afshin and Collarana, Diego and Graux, Damien and Lehmann, Jens},
booktitle={European Conference on Machine Learning and Data Mining, ECML PKDD 2021},
year={2021}
}