Skip to content

A 3D Gaussian Splatting framework with various derived algorithms and an interactive web viewer

License

Notifications You must be signed in to change notification settings

yzslab/gaussian-splatting-lightning

Repository files navigation

Gaussian Splatting PyTorch Lightning Implementation

Known issues

Features

1. Installation

1.1. Clone repository

# clone repository
git clone --recursive https://github.com/yzslab/gaussian-splatting-lightning.git
cd gaussian-splatting-lightning
  • If you forgot the --recursive options, you can run below git commands after cloning:

     git submodule sync --recursive
     git submodule update --init --recursive --force

1.2. Create virtual environment

# create virtual environment
conda create -yn gspl python=3.9 pip
conda activate gspl

1.3. Install PyTorch

  • Tested on PyTorch==2.0.1

  • You must install the one match to the version of your nvcc (nvcc --version)

  • For CUDA 11.8

    pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

1.4. Install requirements

pip install -r requirements.txt

1.5. Install optional packages

  • ffmpeg is required if you want to render video: sudo apt install -y ffmpeg

  • If you want to use nerfstudio-project/gsplat

    pip install git+https://github.com/yzslab/gsplat.git

    This command will install my modified version, which is required by LightGaussian and Mip-Splatting. If you do not need them, you can also install vanilla gsplat v0.1.12.

  • If you need SegAnyGaussian

    • gsplat (see command above)

    • pip install hdbscan scikit-learn==1.3.2 git+https://github.com/facebookresearch/segment-anything.git

    • facebookresearch/pytorch3d

      For torch==2.0.1 and cuda 11.8:

      pip install fvcore iopath
      pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py39_cu118_pyt201/download.html
    • Download ViT-H SAM model, place it to the root dir of this repo.: wget -O sam_vit_h_4b8939.pth https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

2. Training

2.1. Basic command

python main.py fit \
    --data.path DATASET_PATH \
    -n EXPERIMENT_NAME

It can detect some dataset type automatically. You can also specify type with option --data.parser. Possible values are: Colmap, Blender, NSVF, Nerfies, MatrixCity, PhotoTourism, SegAnyColmap, Feature3DGSColmap.

[NOTE] By default, only checkpoint files will be produced on training end. If you need ply file in vanilla 3DGS's format (can be loaded by SIBR_viewer or some WebGL/GPU based viewer):

  • [Option 1]: Convert checkpoint file to ply: python utils/ckpt2ply.py TRAINING_OUTPUT_PATH, e.g.:
    • python utils/ckpt2ply.py outputs/lego
    • python utils/ckpt2ply.py outputs/lego/checkpoints/epoch=300-step=30000.ckpt
  • [Option 2]: Start training with option: --model.save_ply true

2.2. Some useful options

  • Run training with web viewer
python main.py fit \
    --viewer \
    ...
  • It is recommended to use config file configs/blender.yaml when training on blender dataset.
python main.py fit \
    --config configs/blender.yaml \
    ...
# the requirements of mask
#   * must be single channel
#   * zero(black) represent the masked pixel (won't be used to supervise learning)
#   * the filename of the mask file must be image filename + '.png', 
#     e.g.: the mask of '001.jpg' is '001.jpg.png'
... fit \
  --data.parser Colmap \
  --data.parser.mask_dir MASK_DIR_PATH \
  ...
  • Use downsampled images (colmap dataset only)

You can use utils/image_downsample.py to downsample your images, e.g. 4x downsample: python utils/image_downsample.py PATH_TO_DIRECTORY_THAT_STORE_IMAGES --factor 4

# it will load images from `images_4` directory
... fit \
  --data.parser Colmap \
  --data.parser.down_sample_factor 4 \
  ...

Rounding mode is specified by --data.parser.down_sample_rounding_mode. Available values are floor, round, round_half_up, ceil. Default is round.

  • Load large dataset without OOM
... fit \
  --data.train_max_num_images_to_cache 1024 \
  ...

Make sure that command which nvcc can produce output, or gsplat will be disabled automatically.

python main.py fit \
    --config configs/gsplat.yaml \
    ...

2.4. Multi-GPU training (DDP)

[NOTE] Try New Multiple GPU training strategy, which can be enabled during densification.

[NOTE] Multi-GPU training with DDP strategy can only be enabled after densification. You can start a single GPU training at the beginning, and save a checkpoint after densification finishing. Then resume from this checkpoint and enable multi-GPU training.

You will get improved PSNR and SSIM with more GPUs: image

# Single GPU at the beginning
python main.py fit \
    --config ... \
    --data.path DATASET_PATH \
    --model.density.densify_until_iter 15000 \
    --max_steps 15000
# Then resume, and enable multi-GPU
python main.py fit \
    --config ... \
    --trainer configs/ddp.yaml \
    --data.path DATASET_PATH \
    --max_steps 30000 \
    --ckpt_path last  # find latest checkpoint automatically, or provide a path to checkpoint file

deform-gs-new.mp4

python main.py fit \
    --config configs/deformable_blender.yaml \
    --data.path ...
python main.py fit \
    --config configs/mip_splatting_gsplat.yaml \
    --data.path ...
  • Prune & finetune only currently

  • Train & densify & prune

    ... fit \
        --config configs/light_gaussian/train_densify_prune-gsplat.yaml \
        --data.path ...
  • Prune & finetune (make sure to use the same hparams as the input model used)

    ... fit \
        --config configs/light_gaussian/prune_finetune-gsplat.yaml \
        --data.path ... \
        ... \
        --ckpt_path YOUR_CHECKPOINT_PATH

2.8. AbsGS / EfficientGS

... fit \
    --config configs/gsplat-absgrad.yaml \
    --data.path ...
  • Install diff-surfel-rasterization first

    pip install git+https://github.com/hbb1/diff-surfel-rasterization.git@3a9357f6a4b80ba319560be7965ed6a88ec951c6
  • Then start training

    ... fit \
        --config configs/vanilla_2dgs.yaml \
        --data.path ...
  • First, train a 3DGS scene using gsplat

    python main.py fit \
        --config configs/gsplat.yaml \
        --data.path data/Truck \
        -n Truck -v gsplat  # trained model will save to `outputs/Truck/gsplat`
  • Then generate SAM masks and their scales

    • Masks

      python utils/get_sam_masks.py data/Truck/images

      You can specify the path to SAM checkpoint via argument -c PATH_TO_SAM_CKPT

    • Scales

      python utils/get_sam_mask_scales.py outputs/Truck/gsplat

    Both the masks and scales will be saved in data/Truck/semantics, the structure of data/Truck will like this:

    ├── images  # The images of your dataset
        ├── 000001.jpg
        ├── 000002.jpg
        ...
    ├── semantic  # Generated by `get_sam_masks.py` and `get_sam_mask_scales.py`
        ├── masks
            ├── 000001.jpg.pt
            ├── 000002.jpg.pt
            ...
        └── scales
            ├── 000001.jpg.pt
            ├── 000002.jpg.pt
            ...
    ├── sparse  # colmap sparse database
        ...
  • Train SegAnyGS

    python seganygs.py fit \
        --config configs/segany_splatting.yaml \
        --data.path data/Truck \
        --model.initialize_from outputs/Truck/gsplat \
        -n Truck -v seganygs  # save to `outputs/Truck/seganygs`

    The value of --model.initialize_from is the path to the trained 3DGS model

  • Start the web viewer to perform segmentation or cluster

    python viewer.py outputs/Truck/seganygs

    SegAnyGS-WebViewer.mp4

2.11. Reconstruct a large scale scene with the partitioning strategy like VastGaussian

Baseline Partitioning
image image
image image

There is no single script to finish the whole pipeline. Please refer to below contents about how to reconstruct a large scale scene.

2.12. Appearance Model

With appearance model, the reconstruction quality can be improved when your images have various appearance, such as different exposure, white balance, contrast and even day and night.

This model assign an extra feature vector $\boldsymbol{\ell}^{(g)}$ to each 3D Gaussian and an appearance embedding vector $\boldsymbol{\ell}^{(a)}$ to each appearance group. Both of them will be used as the input of a lightweight MLP to calculate the color.

$$ \mathbf{C} = f \left ( \boldsymbol{\ell}^{(g)}, \boldsymbol{\ell}^{(a)} \right ) $$

Please refer to internal/renderers/gsplat_appearance_embedding_renderer.py for more details.

Baseline New Model
Train-head-baseline.mp4
Train-head.mp4
Day-and-Night.mp4
  • First generate appearance groups (Colmap or PhotoTourism dataset only)
python utils/generate_image_apperance_groups.py PATH_TO_DATASET_DIR \
    --image \
    --name appearance_image_dedicated  # the name will be used later

The images in a group will share a common appearance embedding. The command above will assign each image a group, which means that will not share any appearance embedding between images.

  • Then start training
python main.py fit \
    --config configs/appearance_embedding_renderer/view_dependent.yaml \
    --data.path PATH_TO_DATASET_DIR \
    --data.parser Colmap \
    --data.parser.appearance_groups appearance_image_dedicated  # value here should be the same as the one provided to `--name` above

If you are using PhotoTourism dataset, please replace --data.parser Colmap with --data.parser PhotoTourism.

2.13. 3DGS-MCMC

  • Install submodules/mcmc_relocation first
pip install submodules/mcmc_relocation
  • Then training
... fit \
    --config configs/gsplat-mcmc.yaml \
    --model.density.cap_max MAX_NUM_GAUSSIANS \
    ...

MAX_NUM_GAUSSIANS is the maximum number of Gaussians that will be used.

Refer to ubc-vision/3dgs-mcmc, internal/density_controllers/mcmc_density_controller.py and internal/metrics/mcmc_metrics.py for more details.

2.14. Feature distillation

Click me

This comes from Feature 3DGS. But two stage optimization is adapted here, rather than jointly.

  • First, train a model using gsplat (see command above)

  • Then extract feature map from your dataset

    Theoretically, any feature is distillable. You need to implement your own feature map extractor. Here are instructions about extracting SAM and LSeg features.

    • SAM

      python utils/get_sam_embeddings.py data/Truck/images

      With this command, feature maps will be saved to data/Truck/semantic/sam_features, and preview to data/Truck/semantic/sam_feature_preview, respectively.

    • LSeg: please use ShijieZhou-UCLA/feature-3dgs and follow its instruction to extra LSeg features (do not use this repo's virtual environment for it).

  • Then start distillation

    • SAM

      python main.py fit \
          --config configs/feature_3dgs/sam-speedup.yaml \
          --data.path data/Truck \
          --data.parser.down_sample_factor 2 \
          --model.initialize_from outputs/Truck/gsplat \
          -n Truck -v feature_3dgs-sam
    • LSeg

      [NOTE] In order to distill LSeg's high-dimensional features, you may need a GPU equipped with a large memory capacity

      python main.py fit \
          --config configs/feature_3dgs/lseg-speedup.yaml \
          ...

    --model.initialize_from is the path to your trained model.

    Since rasterizing high dimension features is slow, --data.parser.down_sample_factor is used here to smaller the rendered feature map to speedup distillation.

  • After distillation finishing, you can use viewer to visualize the feature map rendered from 3D Gaussians

    python viewer.py outputs/Truck/feature_3dgs

    CLIP is required if you are using LSeg feature: pip install git+https://github.com/openai/CLIP.git

    object-recognition.mp4

    LSeg feature is used in this video.

2.15. In the wild

image image image image

Introduction

Based on the Appearance Model (2.12.) above, this model can produce a visibility map for every training view indicating whether a pixel belongs to transient objects or not.

The idea of the visibility map is a bit like Ha-NeRF, but rather than uses positional encoding for pixel coordinates, 2D dense grid encoding is used here in order to accelerate training.

Please refer to Ha-NeRF, internal/renderers/gsplat_appearance_embedding_visibility_map_renderer.py and internal/metrics/visibility_map_metrics.py for more details.

[NOTE] Though it shows the capability to distinguish the pixels of transient objects, may not be able to remove some artifats/floaters belong to transients. And may also treat under-reconstructed regions as transients.

Usage

pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch
  • Preparing dataset

Download PhotoTourism dataset from here and split file from the "Additional links" here. The split file should be placed at the same path as the dense directory of the PhotoTourism dataset, e.g.:

├──brandenburg_gate
  ├── dense  # colmap database
      ├── images
          ├── ...
      ├── sparse
      ...
  ├── brandenburg.tsv  # split file

[Optional] 2x downsize the images: python utils/image_downsample.py data/brandenburg_gate/dense/images --factor 2

  • Start training
python main.py fit \
    --config configs/appearance_embedding_visibility_map_renderer/view_independent-2x_ds.yaml \
    --data.path data/brandenburg_gate \
    -n brandenburg_gate

If you have not downsized images, remember to add a --data.parser.down_sample_factor 1 to the command above.

  • Validation on training set
python main.py validate \
   --save_val \
   --val_train \
   --config outputs/brandenburg_gate/lightning_logs/version_0/config.yaml  # you may need to change this path

Then you can find the rendered masks and images in outputs/brandenburg_gate/val.

2.16. New Multiple GPU training strategy

Introduction

This is a bit like a simplified version of Scaling Up 3DGS.

In the implementation here, Gaussians are stored, projected and their colors are calculated in a distributed manner, and each GPU rasterizes a whole image for a different camera. No Pixel-wise Distribution currently.

This strategy works with densification enabled.

[NOTE]

  • Not well validated yet, still under development
  • Training only currently
  • Can not combine with other algorithms directly, e.g. with appearance model
Metrics of MipNeRF360 dataset One batch per GPU, 30K iterations, no other hyperparameters changed.
  • PSNR image

  • SSIM image

  • LPIPS image

Usage

  • Training
python main.py fit \
    --config configs/distributed.yaml \
    ...
  • Merge checkpoints
python utils/merge_distributed_ckpts.py outputs/TRAINED_MODEL_DIR
  • Start viewer
python viewer.py outputs/TRAINED_MODEL_DIR/checkpoints/MERGED_CHECKPOINT_FILE

3. Evaluation

Per-image metrics will be saved to TRAINING_OUTPUT/metrics as a csv file.

Evaluate on validation set

python main.py validate \
    --config outputs/lego/config.yaml

On test set

python main.py test \
    --config outputs/lego/config.yaml

On train set

python main.py validate \
    --config outputs/lego/config.yaml \
    --val_train

Save images that rendered during evaluation/test

python main.py <validate or test> \
    --config outputs/lego/config.yaml \
    --save_val

Then you can find the images in outputs/lego/<val or test>.

4. Web Viewer

Transform Camera Path Edit
transform.mp4
animation.mp4
edit.mp4

4.1 Basic usage

python viewer.py TRAINING_OUTPUT_PATH
# e.g.: 
#   python viewer.py outputs/lego/
#   python viewer.py outputs/lego/checkpoints/epoch=300-step=30000.ckpt
#   python viewer.py outputs/lego/baseline/point_cloud/iteration_30000/point_cloud.ply  # only works with VanillaRenderer

4.2 Load multiple models and enable transform options

python viewer.py \
    outputs/garden \
    outputs/lego \
    outputs/Synthetic_NSVF/Palace/point_cloud/iteration_30000/point_cloud.ply \
    --enable_transform

4.3 Load model trained by other implementations

[NOTE] The commands in this section only design for third-party outputs

python viewer.py \
    Deformable-3D-Gaussians/outputs/lego \
    --vanilla_deformable \
    --reorient disable  # change to enable when loading real world scene
python viewer.py \
    4DGaussians/outputs/lego \
    --vanilla_gs4d
# Install `diff-surfel-rasterization` first
pip install git+https://github.com/hbb1/diff-surfel-rasterization.git@28c928a36ea19407cd9754d068bd9a9535216979
# Then start viewer
python viewer.py \
    2d-gaussian-splatting/outputs/Truck \
    --vanilla_gs2d
python viewer.py \
    SegAnyGAussians/outputs/Truck \
    --vanilla_seganygs
python viewer.py \
    mip-splatting/outputs/bicycle \
    --vanilla_mip

5. F.A.Q.

Q: The viewer shows my scene in unexpected orientation, how to rotate the camera, like the U and O key in the SIBR_viewer?

A: Check the Orientation Control on the right panel, rotate the camera frustum in the scene to the orientation you want, then click Apply Up Direction.

reorient-camera-up.mp4


Besides: You can also click the 'Reset up direction' button. Then the viewer will use your current orientation as the reference.

  • First use mouse to rotate your camera to the orientation you want
  • Then click the 'Reset up direction' button

Q: The web viewer is slow (or low fps, far from real-time).

A: This is expected because of the overhead of the image transfer over network. You can get around 10fps in 1080P resolution, which is enough for you to view the reconstruction quality.