Skip to content

Commit

Permalink
public release of RFQI
Browse files Browse the repository at this point in the history
  • Loading branch information
zaiyan-x committed Aug 4, 2022
1 parent 1c2b15c commit 96a96b9
Show file tree
Hide file tree
Showing 33 changed files with 5,274 additions and 0 deletions.
88 changes: 88 additions & 0 deletions data_container.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
import numpy as np
import torch

class DATA(object):
def __init__(self, state_dim, action_dim, device, max_size=int(1e6)):
self.max_size = max_size
self.ptr = 0
self.size = 0

self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.reward = np.zeros((max_size, 1))
self.not_done = np.zeros((max_size, 1))

self.state_dim = state_dim
self.action_dim = action_dim

self.device = device


def add(self, state, action, next_state, reward, done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.not_done[self.ptr] = 1. - done

self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)


def sample(self, batch_size, use_bootstrap=False):
ind = np.random.randint(0, self.size, size=batch_size)

if use_bootstrap:
return (
torch.FloatTensor(self.state[ind]).to(self.device),
torch.FloatTensor(self.action[ind]).to(self.device),
torch.FloatTensor(self.next_state[ind]).to(self.device),
torch.FloatTensor(self.reward[ind]).to(self.device),
torch.FloatTensor(self.not_done[ind]).to(self.device),
torch.FloatTensor(self.bootstrap_mask[ind]).to(self.device),
)

return (
torch.FloatTensor(self.state[ind]).to(self.device),
torch.FloatTensor(self.action[ind]).to(self.device),
torch.FloatTensor(self.next_state[ind]).to(self.device),
torch.FloatTensor(self.reward[ind]).to(self.device),
torch.FloatTensor(self.not_done[ind]).to(self.device)
)


def save(self, save_folder):
np.save(f"{save_folder}_state.npy", self.state[:self.size])
np.save(f"{save_folder}_action.npy", self.action[:self.size])
np.save(f"{save_folder}_next_state.npy", self.next_state[:self.size])
np.save(f"{save_folder}_reward.npy", self.reward[:self.size])
np.save(f"{save_folder}_not_done.npy", self.not_done[:self.size])
np.save(f"{save_folder}_ptr.npy", self.ptr)


def load(self, save_folder, size=-1, bootstrap_dim=None):
reward_buffer = np.load(f"{save_folder}_reward.npy")
# Adjust crt_size if we're using a custom size
size = min(int(size), self.max_size) if size > 0 else self.max_size
self.size = min(reward_buffer.shape[0], size)

# resize data first!
self.state.resize((self.size, self.state_dim))
self.action.resize((self.size, self.action_dim))
self.next_state.resize((self.size, self.state_dim))
self.reward.resize((self.size, 1))
self.not_done.resize((self.size, 1))

# then load!
self.state[:self.size] = np.load(f"{save_folder}_state.npy")[:self.size]
self.action[:self.size] = np.load(f"{save_folder}_action.npy")[:self.size]
self.next_state[:self.size] = np.load(f"{save_folder}_next_state.npy")[:self.size]
self.reward[:self.size] = reward_buffer[:self.size]
self.not_done[:self.size] = np.load(f"{save_folder}_not_done.npy")[:self.size]

if bootstrap_dim is not None:
self.bootstrap_dim = bootstrap_dim
bootstrap_mask = np.random.binomial(n=1, size=(1, self.size, bootstrap_dim,), p=0.8)
bootstrap_mask = np.squeeze(bootstrap_mask, axis=0)
self.bootstrap_mask = bootstrap_mask[:self.size]
Loading

0 comments on commit 96a96b9

Please sign in to comment.