Skip to content

self labeling conditional variational auto encoder

Notifications You must be signed in to change notification settings

zhangfangdeng/SLCVAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Self Labeling Conditional Variational Auto Encoder

使用tensorflow实现论文Improve Diverse Text Generation by Self Labeling Conditional Variational Auto Encoder 论文链接paper

References

参考Knowledge-Guided CVAE for dialog generation的tensorflow实现代码.

论文模型如下:

kgCVAE

Model

slCVAE

Dataset

  • 对话数据集,同kgCVAE
  • 自动回复聊天数据集

Prerequisites

  • TensorFlow 1.12.0
  • cuDNN 6
  • Python 2.7
  • Numpy
  • NLTK
  • You may need to pip install beeprint if the module is missing

Train

python kgcvae_swda.py

Test a existing model

Modify the TF flags at the top of kgcvae_swda.py as follows to run a existing model

forward_only: False -> True
test_path: set to the folder contains the model. E.g. runxxxx

Then you can run the model by:

python kgcvae_swda.py

The outputs will be printed to stdout and generated responses will be saved at test.txt in the test_path.

About

self labeling conditional variational auto encoder

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages