Skip to content

Commit

Permalink
Add theory for 带鳍三阶鱼 #5 #11
Browse files Browse the repository at this point in the history
  • Loading branch information
zhugelianglongming committed Mar 28, 2023
1 parent d46c9db commit ac97d4e
Show file tree
Hide file tree
Showing 7 changed files with 104 additions and 34 deletions.
4 changes: 2 additions & 2 deletions 技巧/图谱/.obsidian/graph.json
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,6 @@
"repelStrength": 15.4459635416667,
"linkStrength": 1,
"linkDistance": 97,
"scale": 0.4632003979877033,
"close": false
"scale": 0.4213868351962463,
"close": true
}
24 changes: 15 additions & 9 deletions 技巧/图谱/.obsidian/workspace.json
Original file line number Diff line number Diff line change
Expand Up @@ -28,13 +28,14 @@
"viewState": {
"x": 1280.5,
"y": -1240,
"zoom": -2.972808090847977
"zoom": -2.5510620941028654
}
},
"pinned": true
}
}
]
],
"currentTab": 1
}
],
"direction": "vertical"
Expand Down Expand Up @@ -63,7 +64,7 @@
"state": {
"type": "search",
"state": {
"query": "",
"query": "四阶",
"matchingCase": false,
"explainSearch": false,
"collapseAll": false,
Expand Down Expand Up @@ -108,6 +109,7 @@
"state": {
"type": "backlink",
"state": {
"file": "技巧画布.canvas",
"collapseAll": false,
"extraContext": false,
"sortOrder": "alphabetical",
Expand All @@ -124,6 +126,7 @@
"state": {
"type": "outgoing-link",
"state": {
"file": "技巧画布.canvas",
"linksCollapsed": false,
"unlinkedCollapsed": true
}
Expand All @@ -145,7 +148,9 @@
"type": "leaf",
"state": {
"type": "outline",
"state": {}
"state": {
"file": "技巧画布.canvas"
}
}
},
{
Expand Down Expand Up @@ -174,11 +179,14 @@
"table-editor-obsidian:Advanced Tables Toolbar": false
}
},
"active": "750e8ad12eb79598",
"active": "b27ffda7ebdc288e",
"lastOpenFiles": [
"技巧画布.canvas",
"链/鱼/标准鱼/二阶鱼.md",
"链/鱼/带鳍鱼/带鳍二阶鱼.md",
"链/鱼/带鳍鱼/带鳍三阶鱼.md",
"链/鱼/标准鱼/三阶鱼.md",
"链/鱼/标准鱼/四阶鱼.md",
"链/鱼/标准鱼/二阶鱼.md",
"技巧画布.canvas",
"链/鱼/复杂鱼/复杂鱼.md",
"链/鱼/复杂鱼/X环.md",
"链/烟花/四重烟花.md",
Expand All @@ -204,8 +212,6 @@
"链/强制链组/单元强制链组/单元格强制链组.md",
"结构/关系/弱关系.md",
"结构/关系/强关系.md",
"结构/关系/共轭对.md",
"结构/关系/关系.md",
"链/强制链组/单元强制链组",
"链/强制链组",
"链/环",
Expand Down
47 changes: 26 additions & 21 deletions 技巧/图谱/技巧画布.canvas
Original file line number Diff line number Diff line change
Expand Up @@ -2,41 +2,43 @@
"nodes":[
{"type":"group","label":"链","id":"081dfcfba9edbd57","x":441,"y":-3840,"width":3680,"height":2640},
{"type":"group","label":"环","id":"43a70ee88e3514cd","x":681,"y":-3680,"width":2240,"height":1800},
{"id":"082c69ad54f211dc","x":1241,"y":-3600,"width":1640,"height":1680,"type":"group","label":"鱼"},
{"type":"group","label":"鱼","id":"082c69ad54f211dc","x":1241,"y":-3600,"width":1640,"height":1680},
{"type":"group","label":"数组","id":"54586bfc7b770707","x":-600,"y":-80,"width":1800,"height":1340},
{"type":"group","label":"关系","id":"309c3be6dec4258f","x":1720,"y":-80,"width":1000,"height":1440},
{"id":"cce6f6b6db8f561b","x":1281,"y":-2440,"width":1560,"height":480,"type":"group","label":"标准鱼"},
{"type":"group","label":"标准鱼","id":"cce6f6b6db8f561b","x":1281,"y":-2440,"width":1560,"height":480},
{"type":"group","label":"带外鳍鱼","id":"e547172555975ee9","x":1281,"y":-3000,"width":1560,"height":480},
{"type":"group","label":"多分支匹配法","id":"afd18034978dd5f6","x":3200,"y":-80,"width":480,"height":1440},
{"type":"group","label":"同区域同数关系","id":"74435c4c68f2bf27","x":2200,"y":0,"width":480,"height":1320},
{"id":"e547172555975ee9","x":1281,"y":-3000,"width":920,"height":480,"type":"group","label":"带外鳍鱼"},
{"type":"file","file":"数组/隐性数组/隐性三数组.md","id":"57a4efcbe8f0ff01","x":300,"y":400,"width":400,"height":400,"color":"4"},
{"type":"file","file":"数组/数组.md","id":"2efc0502614c190a","x":-580,"y":-40,"width":400,"height":400,"color":"1"},
{"type":"file","file":"链/鱼/带鳍鱼/带鳍二阶鱼.md","id":"25438307bb1c9a70","x":1761,"y":-2940,"width":400,"height":400,"color":"4"},
{"type":"file","file":"链/超标准链/超链+ALS/ALS+双强链/双RCC拓展.md","id":"d4ad7d8a976ea97b","x":3401,"y":-3200,"width":400,"height":400},
{"type":"text","text":"双强链","id":"10b6b5dba5d0de61","x":2361,"y":-1520,"width":250,"height":50},
{"type":"file","file":"链/鱼/复杂鱼/X环.md","id":"747b5ffe04f873ff","x":1281,"y":-3520,"width":400,"height":400},
{"type":"file","file":"链/环/标准环.md","id":"bb74d88f407b7901","x":700,"y":-3520,"width":400,"height":400},
{"type":"file","file":"数组/数对.md","id":"c8fdb817c6abab6c","x":-140,"y":-40,"width":400,"height":400,"color":"2"},
{"type":"file","file":"结构/关系/关系.md","id":"db2fd268cb2cf847","x":1754,"y":0,"width":400,"height":400,"color":"1"},
{"type":"file","file":"数组/隐性数组/隐性数组.md","id":"cdcc2a093a086220","x":-580,"y":400,"width":400,"height":400,"color":"3"},
{"type":"file","file":"数组/显性数组/显性数组.md","id":"17ca93e244ec9a07","x":-580,"y":840,"width":400,"height":400,"color":"3"},
{"type":"file","file":"链/标准链/远程数对.md","id":"f6924789fe7159a1","x":-840,"y":-920,"width":400,"height":400},
{"type":"file","file":"待定数组/欠一数组/欠一数对.md","id":"61234cb591d3be6f","x":-1560,"y":-40,"width":400,"height":400},
{"type":"file","file":"定集合准区域数组.md","id":"2181fe40baadb99f","x":-140,"y":-920,"width":400,"height":400},
{"type":"file","file":"结构/定区域准集合数组.md","id":"c46d66e776ed150c","x":340,"y":-920,"width":400,"height":400},
{"type":"file","file":"数组/隐性数组/隐性三数组.md","id":"57a4efcbe8f0ff01","x":300,"y":400,"width":400,"height":400,"color":"4"},
{"type":"file","file":"数组/隐性数组/隐性数对.md","id":"84f0b95b673f2d44","x":-140,"y":400,"width":400,"height":400,"color":"4"},
{"type":"file","file":"数组/显性数组/显性数对.md","id":"64f85616fe179aa4","x":-140,"y":840,"width":400,"height":400,"color":"4"},
{"type":"file","file":"数组/显性数组/显性四数组.md","id":"0e6b0e168ba9e815","x":740,"y":840,"width":400,"height":400,"color":"4"},
{"type":"file","file":"结构/关系/关系.md","id":"db2fd268cb2cf847","x":1754,"y":0,"width":400,"height":400,"color":"1"},
{"type":"file","file":"结构/关系/强关系.md","id":"ac193da0b7aafd9f","x":1754,"y":440,"width":400,"height":400,"color":"3"},
{"type":"file","file":"结构/关系/弱关系.md","id":"4599e27960ea7cb2","x":1754,"y":880,"width":400,"height":400,"color":"3"},
{"type":"file","file":"数组/数组.md","id":"2efc0502614c190a","x":-580,"y":-40,"width":400,"height":400,"color":"1"},
{"type":"file","file":"数组/隐性数组/隐性数组.md","id":"cdcc2a093a086220","x":-580,"y":400,"width":400,"height":400,"color":"3"},
{"type":"file","file":"数组/显性数组/显性数组.md","id":"17ca93e244ec9a07","x":-580,"y":840,"width":400,"height":400,"color":"3"},
{"type":"file","file":"数组/隐性数组/隐性四数组.md","id":"746622ae6b8273fa","x":740,"y":400,"width":400,"height":400,"color":"4"},
{"type":"file","file":"数组/显性数组/显性三数组.md","id":"79c3d82ffa91cfdc","x":300,"y":840,"width":400,"height":400,"color":"4"},
{"type":"file","file":"链/标准链/远程数对.md","id":"f6924789fe7159a1","x":-840,"y":-920,"width":400,"height":400},
{"type":"file","file":"结构/关系/共轭对.md","id":"9180c59ca52cd0c8","x":2240,"y":440,"width":400,"height":840,"color":"4"},
{"type":"file","file":"待定数组/欠一数组/欠一数对.md","id":"61234cb591d3be6f","x":-1560,"y":-40,"width":400,"height":400},
{"type":"file","file":"链/标准链/规则Wing/双分支匹配法.md","id":"e739bb6032e0bf3d","x":3240,"y":0,"width":400,"height":400},
{"type":"file","file":"定集合准区域数组.md","id":"2181fe40baadb99f","x":-140,"y":-920,"width":400,"height":400},
{"type":"file","file":"结构/定区域准集合数组.md","id":"c46d66e776ed150c","x":340,"y":-920,"width":400,"height":400},
{"id":"25438307bb1c9a70","x":1761,"y":-2940,"width":400,"height":400,"color":"4","type":"file","file":"链/鱼/带鳍鱼/带鳍二阶鱼.md"},
{"type":"file","file":"数组/显性数组/显性三数组.md","id":"79c3d82ffa91cfdc","x":300,"y":840,"width":400,"height":400,"color":"4"},
{"type":"file","file":"链/超标准链/超链+ALS/ALS+双分支匹配法.md","id":"b2e4fade518fcb15","x":2961,"y":-2280,"width":400,"height":400},
{"type":"file","file":"链/超标准链/超链+ALS/ALS+双强链/ALS+双强链.md","id":"7b14ef76992300da","x":3401,"y":-2280,"width":400,"height":400},
{"type":"file","file":"链/超标准链/超链+ALS/ALS+双强链/双RCC拓展.md","id":"d4ad7d8a976ea97b","x":3401,"y":-3200,"width":400,"height":400},
{"id":"35878ae263bc80ab","x":1321,"y":-2400,"width":400,"height":400,"color":"1","type":"file","file":"链/鱼/标准鱼/标准鱼.md"},
{"id":"3e5b95a81a16dc76","x":1761,"y":-2400,"width":400,"height":400,"color":"4","type":"file","file":"链/鱼/标准鱼/二阶鱼.md"},
{"type":"text","text":"双强链","id":"10b6b5dba5d0de61","x":2361,"y":-1520,"width":250,"height":50},
{"type":"file","file":"链/鱼/复杂鱼/X环.md","id":"747b5ffe04f873ff","x":1281,"y":-3520,"width":400,"height":400},
{"type":"file","file":"链/环/标准环.md","id":"bb74d88f407b7901","x":700,"y":-3520,"width":400,"height":400}
{"type":"file","file":"链/鱼/标准鱼/标准鱼.md","id":"35878ae263bc80ab","x":1321,"y":-2400,"width":400,"height":400,"color":"1"},
{"type":"file","file":"链/鱼/标准鱼/二阶鱼.md","id":"3e5b95a81a16dc76","x":1761,"y":-2400,"width":400,"height":400,"color":"4"},
{"id":"41de7fedca387d4b","x":2200,"y":-2400,"width":400,"height":400,"color":"4","type":"file","file":"链/鱼/标准鱼/三阶鱼.md"},
{"id":"7ba84bda537b93f7","x":2200,"y":-2940,"width":400,"height":400,"color":"4","type":"file","file":"链/鱼/带鳍鱼/带鳍三阶鱼.md"}
],
"edges":[
{"id":"0d5336f578a773d4","fromNode":"61234cb591d3be6f","fromSide":"top","toNode":"f6924789fe7159a1","toSide":"bottom","color":"1","label":"组合"},
Expand All @@ -58,6 +60,9 @@
{"id":"3d968af80ffacac8","fromNode":"43a70ee88e3514cd","fromSide":"right","toNode":"d4ad7d8a976ea97b","toSide":"bottom","color":"1"},
{"id":"bc53c4cd5b13aa1d","fromNode":"c46d66e776ed150c","fromSide":"top","toNode":"d4ad7d8a976ea97b","toSide":"bottom","color":"1"},
{"id":"538b96c8ae305e69","fromNode":"7b14ef76992300da","fromSide":"top","toNode":"d4ad7d8a976ea97b","toSide":"bottom","color":"4","label":"扩展严格共享候选数"},
{"id":"f7dafdecabb7ef83","fromNode":"3e5b95a81a16dc76","fromSide":"top","toNode":"25438307bb1c9a70","toSide":"bottom","color":"4","label":"扩展鳍"}
{"id":"f7dafdecabb7ef83","fromNode":"3e5b95a81a16dc76","fromSide":"top","toNode":"25438307bb1c9a70","toSide":"bottom","color":"4","label":"扩展鳍"},
{"id":"9881bb1b81f17f8b","fromNode":"3e5b95a81a16dc76","fromSide":"right","toNode":"41de7fedca387d4b","toSide":"left","color":"4"},
{"id":"db3b4a51aa0bbb36","fromNode":"41de7fedca387d4b","fromSide":"top","toNode":"7ba84bda537b93f7","toSide":"bottom","color":"4","label":"扩展鳍"},
{"id":"73f697aa0be76171","fromNode":"25438307bb1c9a70","fromSide":"right","toNode":"7ba84bda537b93f7","toSide":"left","color":"4"}
]
}
43 changes: 43 additions & 0 deletions 技巧/图谱/链/鱼/带鳍鱼/带鳍三阶鱼.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
# 带鳍三阶鱼

<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
## 目录

- [原理](#%E5%8E%9F%E7%90%86)
- [技巧拓展](#%E6%8A%80%E5%B7%A7%E6%8B%93%E5%B1%95)
- [标签](#%E6%A0%87%E7%AD%BE)

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

## 原理

因为
- 存在 3 行 3 列`RegionLineParallel[1,3]` 、`RegionLinePerpendicular[1,3]
- `RegionLineParallel[n]` 之间互相平行
- `RegionLinePerpendicular[n]` 之间互相平行
- `RegionLinePerpendicular[n]` 垂直于`RegionLinePerpendicular[m]`
- `RegionLineParallel[n]` 和`RegionLinePerpendicular[m]`相交于单元格`Cell[nm]`
- 对于候选数`X`
- 在行列`RegionLineParallel[1]` 中
- 可填入数字`X`的单元格仅限于`Cell[11]`、`Cell[12]`、`Cell[13]`和区块 `Cells1[4,i]`
- 在行列`RegionLineParallel[2]` 中
- 可填入数字`X`的单元格仅限于`Cell[21]`、`Cell[22]`、`Cell[23]`
- 在行列`RegionLineParallel[3]` 中
- 可填入数字`X`的单元格仅限于`Cell[31]`、`Cell[32]`、`Cell[33]`

所以
- [[三阶鱼#删除域|三阶鱼的删除域]] 与 区块 `Cells1[4,i]` 的共同影响区域
- 必不填入数字`X`

> 通过分析`X`是否填入区块的情况
### 技巧拓展

- [[三阶鱼]]:拓展鳍

## 标签

- #Level/c1

> [SudokuWiki.org - Finned Swordfish](https://www.sudokuwiki.org/Finned_SwordFish)
4 changes: 2 additions & 2 deletions 技巧/图谱/链/鱼/带鳍鱼/带鳍二阶鱼.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,12 @@
- `RegionLineParallel[n]` 和`RegionLinePerpendicular[m]`相交于单元格`Cell[nm]`
- 对于候选数`X`
- 在行列`RegionLineParallel[1]` 中
- 可填入数字`X`的单元格仅`Cell[11]`、`Cell[12]`、区块 `Cells[3,i]`
- 可填入数字`X`的单元格仅`Cell[11]`、`Cell[12]`和区块 `Cells1[3,i]`
- 在行列`RegionLineParallel[2]` 中
- 可填入数字`X`的单元格仅`Cell[21]`、`Cell[22]`

所以
- [[二阶鱼#删除域|二阶鱼的删除域]] 与 区块 `Cells[3,i]` 的共同影响区域
- [[二阶鱼#删除域|二阶鱼的删除域]] 与 区块 `Cells1[3,i]` 的共同影响区域
- 必不填入数字`X`

> 通过分析`X`是否填入区块的情况
Expand Down
16 changes: 16 additions & 0 deletions 技巧/图谱/链/鱼/标准鱼/三阶鱼.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

- [原理](#%E5%8E%9F%E7%90%86)
- [技巧拓展](#%E6%8A%80%E5%B7%A7%E6%8B%93%E5%B1%95)
- [性质](#%E6%80%A7%E8%B4%A8)
- [删除域](#%E5%88%A0%E9%99%A4%E5%9F%9F)
- [标签](#%E6%A0%87%E7%AD%BE)

<!-- END doctoc generated TOC please keep comment here to allow auto update -->
Expand Down Expand Up @@ -45,6 +47,20 @@

- [[二阶鱼]]:拓展分析行列区域的数量

## 性质

### 删除域

[[二阶鱼#原理|原理]]的定义下,`三阶鱼的删除域` 指的是:
- 在行列`RegionLinePerpendicular[1]`
- 除了`Cell[11]`、`Cell[12]`、`Cell[13]`的其他单元格
- 在行列`RegionLinePerpendicular[2]`
- 除了`Cell[21]`、`Cell[22]`、`Cell[23]`的其他单元格
- 在行列`RegionLinePerpendicular[3]`
- 除了`Cell[31]`、`Cell[32]`、`Cell[33]`的其他单元格
故,结论可以简化为:
- 三阶鱼的删除域:
- 必不填入数字`X`

## 标签

Expand Down
File renamed without changes.

0 comments on commit ac97d4e

Please sign in to comment.