Implementation of a Fully-linear DenseNet for pipe busrt location of a water distribution network.
- --arch choose a kind of architecture to use
- --out the file name of predict result
- --lr learning rate
- --epoch training epochs
- --kind the name of the log file recording information during running
- --lr_decay learning rate decay
- --data_dir the path of dataset
- --save_path the path of saving model (need to change code)
- --num_init_features an argument of arch waterdsnetf_self_define
- --growth_rate an argument of arch waterdsnetf_self_define
python train.py main --arch waterdsnetf --lr 0.6 --epoch 120 --kind Anytown_P10C10_B0105_4M --data_dir ~/water/Anytown_P10C10_B0105_4M --save_path './water/modelparams' --out Anytown_P10C10_B0105_4M
python train.py main --arch waterdsnetf_self_define --num_init_features 320 --growth_rate 32 --lr 0.6 --epoch 120 --kind Anytown_P10C10_B1030_Duration5 --data_dir ~/water/Anytown_P10C10_B1030_Duration5 --save_path './water/modelparams' --out Anytown_P10C10_B1030_Duration5
CUDA_VISIBLE_DEVICES=0 python train.py main --arch waterdsnetf_in4_out58 --lr 0.6 --epoch 120 --kind Mudu_P10C10_B1030_4M --data_dir ~/water/Mudu_P10C10_B1030_4M --save_path './water/modelparams' --out Mudu_P10C10_B1030_4M
- diminish learning rate with traning epochs increasing
You can directly changde the codes to set the periods of diminishing.
- batch_size
Default batch_size is 128, you can change it in the train.py
- weight_decay
Default weight_decay is 0.00005, you can change it in config.py