Skip to content

Commit

Permalink
update scripts
Browse files Browse the repository at this point in the history
  • Loading branch information
zlijingtao committed Mar 16, 2022
1 parent 63e6008 commit 98d80e7
Show file tree
Hide file tree
Showing 7 changed files with 47 additions and 45 deletions.
22 changes: 11 additions & 11 deletions reproduce/ace_run_table6.sh
Original file line number Diff line number Diff line change
@@ -1,16 +1,16 @@
#!/bin/bash
cd "$(dirname "$0")"
bash table6/ace_run_expert_vgg11_cut1.sh
bash table6/ace_run_expert_vgg11_cut2.sh
bash table6/ace_run_expert_vgg11_cut3.sh
# bash table6/ace_run_expert_vgg11_cut1.sh
# bash table6/ace_run_expert_vgg11_cut2.sh
# bash table6/ace_run_expert_vgg11_cut3.sh
bash table6/ace_run_finetune_lowLRlite_vgg.sh

bash table6/ace_run_expert_resnet20_cut2.sh
bash table6/ace_run_expert_resnet20_cut3.sh
bash table6/ace_run_expert_resnet20_cut4.sh
bash table6/ace_run_finetune_lowLRlite_resnet.sh
# bash table6/ace_run_expert_resnet20_cut2.sh
# bash table6/ace_run_expert_resnet20_cut3.sh
# bash table6/ace_run_expert_resnet20_cut4.sh
# bash table6/ace_run_finetune_lowLRlite_resnet.sh

bash table6/ace_run_expert_mobilenet_cut2.sh
bash table6/ace_run_expert_mobilenet_cut3.sh
bash table6/ace_run_expert_mobilenet_cut4.sh
bash table6/ace_run_finetune_lowLRlite_mobilenetv2.sh
# bash table6/ace_run_expert_mobilenet_cut2.sh
# bash table6/ace_run_expert_mobilenet_cut3.sh
# bash table6/ace_run_expert_mobilenet_cut4.sh
# bash table6/ace_run_finetune_lowLRlite_mobilenetv2.sh
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#!/bin/bash
cd "$(dirname "$0")"
cd ../../
cd ../../../
GPU_id=0
arch=vgg11_bn
batch_size=128
Expand All @@ -19,29 +19,33 @@ ssim_threshold=0.5
train_gan_AE_type=conv_normN0C16
bc_list="8"
gan_loss_type=SSIM
folder_name="supple_saves/MIA_optim"


for bc in $bc_list; do
bottleneck_option=noRELU_C${bc}S1
for dataset in $dataset_list; do
for random_seed in $random_seed_list; do
for regularization_strength in $regularization_strength_list; do
for cutlayer in $cutlayer_list; do
for num_client in $num_client_list; do
filename=ace_${scheme}_${arch}_cutlayer_${cutlayer}_client_${num_client}_seed${random_seed}_dataset_${dataset}_lr_${learning_rate}_${regularization}_both_${train_gan_AE_type}_${regularization_strength}_${num_epochs}epoch_bottleneck_${bottleneck_option}_ssim_${ssim_threshold}_advtrain

folder_name="new_saves/finetune_lite"
local_lr_list="0.005"
bottleneck_option=norelu_C8S1
interval=5
transfer_source_task=cifar10
for random_seed in $random_seed_list; do
for regularization_strength in $regularization_strength_list; do
for cutlayer in $cutlayer_list; do
for num_client in $num_client_list; do
for local_lr in $local_lr_list; do
for dataset in $dataset_list; do
filename=ace_${scheme}_${arch}_cutlayer_${cutlayer}_client_${num_client}_seed${random_seed}_dataset_${dataset}_lr_${learning_rate}_${regularization}_both_${train_gan_AE_type}_${regularization_strength}_${num_epochs}epoch_bottleneck_${bottleneck_option}_servertune_${local_lr}_loadserver_source_${transfer_source_task}
CUDA_VISIBLE_DEVICES=${GPU_id} python main_MIA.py --arch=${arch} --cutlayer=$cutlayer --batch_size=${batch_size} \
--filename=$filename --num_client=$num_client --num_epochs=$num_epochs --save_more_checkpoints\
--dataset=$dataset --scheme=$scheme --regularization=${regularization} --regularization_strength=${regularization_strength}\
--random_seed=$random_seed --learning_rate=$learning_rate --gan_AE_type ${train_gan_AE_type} --gan_loss_type ${gan_loss_type}\
--local_lr $local_lr --bottleneck_option ${bottleneck_option} --folder ${folder_name} --ssim_threshold ${ssim_threshold}
--load_from_checkpoint --local_lr $local_lr --bottleneck_option ${bottleneck_option} --folder ${folder_name} --ssim_threshold ${ssim_threshold} \
--load_from_checkpoint_server --transfer_source_task ${transfer_source_task} --optimize_computation ${interval}

target_client=0
attack_scheme=MIA_mf
attack_epochs=50
average_time=1



attack_from_later_layer_list="-1"
num_epochs_list="0 1 2 5 10 20 50 100 200"
for attack_from_later_layer in ${attack_from_later_layer_list}; do
Expand All @@ -65,29 +69,29 @@ for bc in $bc_list; do
done
done

local_lr_list="0.005"
bottleneck_option=norelu_C8S1
interval=5
transfer_source_task=cifar10
for random_seed in $random_seed_list; do
for regularization_strength in $regularization_strength_list; do
for cutlayer in $cutlayer_list; do
for num_client in $num_client_list; do
for local_lr in $local_lr_list; do
for dataset in $dataset_list; do
filename=ace_${scheme}_${arch}_cutlayer_${cutlayer}_client_${num_client}_seed${random_seed}_dataset_${dataset}_lr_${learning_rate}_${regularization}_both_${train_gan_AE_type}_${regularization_strength}_${num_epochs}epoch_bottleneck_${bottleneck_option}_servertune_${local_lr}_loadserver_source_${transfer_source_task}
folder_name="supple_saves/MIA_optim"


for bc in $bc_list; do
bottleneck_option=noRELU_C${bc}S1
for dataset in $dataset_list; do
for random_seed in $random_seed_list; do
for regularization_strength in $regularization_strength_list; do
for cutlayer in $cutlayer_list; do
for num_client in $num_client_list; do
filename=ace_${scheme}_${arch}_cutlayer_${cutlayer}_client_${num_client}_seed${random_seed}_dataset_${dataset}_lr_${learning_rate}_${regularization}_both_${train_gan_AE_type}_${regularization_strength}_${num_epochs}epoch_bottleneck_${bottleneck_option}_ssim_${ssim_threshold}_advtrain
CUDA_VISIBLE_DEVICES=${GPU_id} python main_MIA.py --arch=${arch} --cutlayer=$cutlayer --batch_size=${batch_size} \
--filename=$filename --num_client=$num_client --num_epochs=$num_epochs --save_more_checkpoints\
--dataset=$dataset --scheme=$scheme --regularization=${regularization} --regularization_strength=${regularization_strength}\
--random_seed=$random_seed --learning_rate=$learning_rate --gan_AE_type ${train_gan_AE_type} --gan_loss_type ${gan_loss_type}\
--load_from_checkpoint --local_lr $local_lr --bottleneck_option ${bottleneck_option} --folder ${folder_name} --ssim_threshold ${ssim_threshold} \
--load_from_checkpoint_server --transfer_source_task ${transfer_source_task} --optimize_computation ${interval}
--local_lr $local_lr --bottleneck_option ${bottleneck_option} --folder ${folder_name} --ssim_threshold ${ssim_threshold}

target_client=0
attack_scheme=MIA_mf
attack_epochs=50
average_time=1



attack_from_later_layer_list="-1"
num_epochs_list="0 1 2 5 10 20 50 100 200"
for attack_from_later_layer in ${attack_from_later_layer_list}; do
Expand All @@ -110,5 +114,3 @@ for random_seed in $random_seed_list; do
done
done
done


Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#!/bin/bash
cd "$(dirname "$0")"
cd ../../
cd ../../../
GPU_id=0
arch=vgg11_bn
batch_size=128
Expand Down
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
#!/bin/bash
cd "$(dirname "$0")"
cd ../../
cd ../../../
GPU_id=0
arch=vgg11_bn
batch_size=128
Expand Down
2 changes: 1 addition & 1 deletion reproduce/table6/ace_run_expert_vgg11_cut1.sh
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ batch_size=128

num_client=2
num_epochs=200
dataset_list="cifar10"
dataset_list="cifar10 cifar100"
scheme=V2_epoch
random_seed_list="125"
#Extra argement (store_true): --collude_use_public, --initialize_different --collude_not_regularize --collude_not_regularize --num_client_regularize ${num_client_regularize}
Expand Down
2 changes: 1 addition & 1 deletion reproduce/table6/ace_run_expert_vgg11_cut3.sh
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ batch_size=128

num_client=2
num_epochs=200
dataset_list="cifar10"
dataset_list="cifar10 cifar100"
scheme=V2_epoch
random_seed_list="125"
#Extra argement (store_true): --collude_use_public, --initialize_different --collude_not_regularize --collude_not_regularize --num_client_regularize ${num_client_regularize}
Expand Down
2 changes: 1 addition & 1 deletion reproduce/table6/ace_run_finetune_lowLRlite_vgg.sh
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ gan_loss_type=SSIM
transfer_source_task=cifar10

dataset_list="cifar100"
learning_rate=0.02
learning_rate=0.05
local_lr_list="0.005"

bottleneck_option=norelu_C1S1
Expand Down

0 comments on commit 98d80e7

Please sign in to comment.